Study on Thermal Degradation and Kinetic of Microencapsulated Red Phosphorus (MRP)/High Density Polyethylene (HDPE) Composite

Article Preview

Abstract:

Thermal degradation of the composite constituted by high density polyethylene (HDPE) and microencapsulated red phosphorus (MRP) were studied using thermogravimetric (TG) data obtained at different heating rates. The kinetic models and parameters of the thermal degradation of MRP/HDPE composite were evaluated by FWO, KAS and IKP method. It indicates that the activation energy E of 4 % MRP/HDPE composite is higher than HDPE for three methods. MRP could improve the thermal stability and slow down the thermal degradation of HDPE. With adding MRP, the degradation mechanism of HDPE is changed and the degradation rate decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-104

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.Y. Xia, Z.Y. Zhang, Y. Leng, B. Li, M.J. Xu, Synthesis of a novel mono-component intumescent flame retardant and its high efficiency for flame retardant polyethylene, J. Anal. Appl. Pyrol. 134 (2018) 632-640.

DOI: 10.1016/j.jaap.2018.08.017

Google Scholar

[2] Y. Liu, Z. Cao, Y. Zhang, Z.P. Fang, Synthesis of zinc N-morpholinomethylphosphonic acid and its application in high density polyethylene, Fire Safety J. 71 (2015) 1-8.

DOI: 10.1016/j.firesaf.2014.11.003

Google Scholar

[3] C. Lu, X.P. Gao, D.H. Yao, C.L. Cao, Y.J. Luo, Improving flame retardancy of linear low-density polyethylene/nylon 6 blends via controlling localization of clay and intumescent flame-retardant, Polym. Degrad. Stab. 153 (2018) 75-87.

DOI: 10.1016/j.polymdegradstab.2018.04.022

Google Scholar

[4] P Fei, X. Chen, H.G. Xiong, Z. Din, L. Chen, J. Cai, Synthesis of H2Ti2O3·H2O nanotubes and their effects on the flame retardancy of bamboo fiber/high-density polyethylene composites, Compos. Part A, Appl. S. 90 (2016) 225-233.

DOI: 10.1016/j.compositesa.2016.06.017

Google Scholar

[5] B. Sehartel, R. Kunze, D. Neubert, Red phosphorus-controlled decomposition for fire retardant PA 66, J. Appl. Polym. Sci. 83 (2002) 2060-2071.

DOI: 10.1002/app.10144

Google Scholar

[6] R.C. Xie, B.J. Qu, Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect, J. Appl. Polym. Sci. 80 (2001) 1181-1189.

DOI: 10.1002/app.1202

Google Scholar

[7] J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. Part B: Polym. Lett. 4 (1966) 323-328.

DOI: 10.1002/pol.1966.110040504

Google Scholar

[8] T. Ozawa, A new method of analyzing thermogravimetric data, B. Chem. Soc. Jpn. 38 (1965) 1881-1886.

Google Scholar

[9] A.W. Coats, J. P. Redfern, Kinetic parameters from thermogravimetric data, Nature. 201 (1964) 68-69.

DOI: 10.1038/201068a0

Google Scholar

[10] J. Cao, T.Y Chen, B.S. Jin, Y.J Huang, C.H Hu, Structural effects of HCl adsorption on Mg-Fe hydrotalcite-like oxides at 350-650 °C in flue gas, Ind. Eng. Chem. Res. 57 (2018) 14939-14947.

DOI: 10.1021/acs.iecr.8b02999

Google Scholar

[11] A.I. Lesnikovich, S.V. Levchik, A method of finding invariant values of kinetic parameters, J. Therm. Anal. Calorim. 27 (1983) 89-93.

DOI: 10.1007/bf01907324

Google Scholar

[12] A.I. Lesnikovich, S.V. Levchik, V.G. Guslev, Thermolysis of potassium tetraperoxochromate (V). II. Liner hesting, Thermochim. Acta. 77 (1984) 155-365.

DOI: 10.1016/0040-6031(84)87074-4

Google Scholar

[13] L. Richard-Campisi, S. Bourbigot, M.L. Bras, R. Delobel, Thermal behaviour of cotton-modacrylic fibre blends: kinetic study using the invariant kinetic parameters method, Thermochim. Acta. 275 (1996), 37-49.

DOI: 10.1016/0040-6031(95)02729-7

Google Scholar