[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcome. Adv. Eng. Mater., 2004, 6: 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 2008, 10: 534-538.
DOI: 10.1002/adem.200700240
Google Scholar
[3]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61: 11-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[4]
L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, M. K. Miller, R. J. K. Weber, J. C. Neuefeind, Z. Tang, P. K. Liaw. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nature Commun., 2014, 6: 5964-5971.
DOI: 10.1038/ncomms6964
Google Scholar
[5]
Y. Zou, H.A. Ma, R. Spolenak. Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Commun., 2015, 6: 1-13.
DOI: 10.1038/ncomms8748
Google Scholar
[6]
B. Gludozatz, A. Hohenwater, D. Catoor, E.H. Chang, E.P. George, R. O. Ritchie. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[7]
B.Y. Li, K. Peng, A.P. Hu, L.P. Zhou, J. J. Zhu. Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy. Transactions of Nonferrous Metals Society of China, 2013, 23: 735-741.
DOI: 10.1016/s1003-6326(13)62523-6
Google Scholar
[8]
H.B. Xie, G.Z. Liu. Effects of Al addition on microstructure and wear properties of AlxFeCrCoCuV high-entropy alloys. Journal of Materials Engineering, 2016, 44: 65-70.
Google Scholar
[9]
S.F. Gao. Fabrication, microstructure and properties of AlxCoCrCuFeNi alloys and its composites. University of Science and Technology of China, (2014).
Google Scholar
[10]
Q.C. Fan, B.S. Li, Y. Zhang. The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites. Mater. Sci. Eng. A, 2014, 598: 244-250.
DOI: 10.1016/j.msea.2014.01.044
Google Scholar
[11]
S.T. Mileiko, S.A. Firstov, N.A. Novokhatskaya, V.F. Gorban, N.P. Kartika. Oxide-fibre / high entropy alloy matrix composites [J]. Composites: Part A, 2015, 76: 131-134.
DOI: 10.1016/j.compositesa.2015.05.023
Google Scholar
[12]
J.B. Cheng, D. Liu, X. B. Liang. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings. Surface & Coating Technologys, 2015, 281: 109-116.
DOI: 10.1016/j.surfcoat.2015.09.049
Google Scholar
[13]
W. R. Wang, W.L. Wang, S.C. Wang, Y.S. Tsai, C.H. Lai, J.W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, 26:44-51.
DOI: 10.1016/j.intermet.2012.03.005
Google Scholar
[14]
M.H. Chuang, M.H. Tasi, W.R. Wang, S.J. Lin, J.W. Yeh. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloy. Acta Mater., 2011, 59: 6308-6317.
DOI: 10.1016/j.actamat.2011.06.041
Google Scholar