[1]
G. He, Z. Yang, X. Zhou, J. Zhang, L. Pan, and S. Liu. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos. Sci. Technol. 131(2016) 22-31.
DOI: 10.1016/j.compscitech.2016.05.009
Google Scholar
[2]
P. Chen, H. Xie, F. Huang, T. Huang, and Y. Ding. Deformation and failure of polymer bonded explosives under diametric compression test. Polym. Test. 25 (3) (2006) 333-41.
DOI: 10.1016/j.polymertesting.2005.12.006
Google Scholar
[3]
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based Composite Materials. Nature 442 (2006) 282-6.
DOI: 10.1038/nature04969
Google Scholar
[4]
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3) (2008) 902-7.
DOI: 10.1021/nl0731872
Google Scholar
[5]
C. Lee, X.D. Wei, J.W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (2008) 385-8.
DOI: 10.1126/science.1157996
Google Scholar
[6]
Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 22(10) (2010) 1027-36.
DOI: 10.1002/elan.200900571
Google Scholar
[7]
M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh. Graphene for electrochemical sensing and biosensing. Trend. Anal. Chem. 29(9) (2010) 954-65.
DOI: 10.1016/j.trac.2010.05.011
Google Scholar
[8]
Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, X.H. Xia. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34 (2012) 125-31.
DOI: 10.1016/j.bios.2012.01.030
Google Scholar
[9]
K. Zhang, Y. Zhang, S.R. Wang. Effectively decoupling electrical and thermal conductivity of polymer composites. Carbon 65 (2013) 105-11.
DOI: 10.1016/j.carbon.2013.08.005
Google Scholar
[10]
S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.S. Kong, K.W. Paik, S. Jeon. Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization. Adv. Mater. 25 (2013) 732-7.
DOI: 10.1002/adma.201202736
Google Scholar
[11]
Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, P.V. Kamat. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films. J. phys. Chem. Lett. 1 (2010) 2222-7.
DOI: 10.1021/jz100728z
Google Scholar
[12]
X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20 (2010) 2801-6.
DOI: 10.1039/b917240h
Google Scholar
[13]
X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, Boey F, Zhang H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7 (14) (2011) 1876-902.
DOI: 10.1002/smll.201002009
Google Scholar
[14]
K.S. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci 39 (2014) 1934-1972.
DOI: 10.1016/j.progpolymsci.2014.03.001
Google Scholar
[15]
X.G. Li, J. Warzywoda, G.B. McKenna, Mechanical responses of a polymer graphene-sheet nano-sandwich, Polymer 55 (2014) 4976-4982.
DOI: 10.1016/j.polymer.2014.08.008
Google Scholar
[16]
S. Biswas, H. Fukushima, L.T. Drzal, Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites, Compos. Part A 42 (2011) 371-375.
DOI: 10.1016/j.compositesa.2010.12.006
Google Scholar
[17]
X.L. Cui, P. Ding, N. Zhuang, L.Y. Shi, N. Song, S.F. Tang, Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect, ACS Appl. Mater. Interface 7 (2015) 19068-19075.
DOI: 10.1021/acsami.5b04444
Google Scholar
[18]
P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.H. Kim, C.M. Koo, Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides, Carbon 101 (2016) 120-128.
DOI: 10.1016/j.carbon.2016.01.088
Google Scholar
[19]
T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327-331.
DOI: 10.1038/nnano.2008.96
Google Scholar
[20]
X.G. Li, G.B. McKenna, Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites, ACS Macro Lett. 1 (2012) 388-391.
DOI: 10.1021/mz200253x
Google Scholar
[21]
S. Choi, H. Im, J. Kim, Flexible and high thermal conductivity thin films based on polymer: Aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites, Compos. Part A 43 (2012) 1860-1868.
DOI: 10.1016/j.compositesa.2012.06.009
Google Scholar
[22]
S. Agarwal, M.M.K. Khan, R.K. Gupta, Thermal conductivity of polymer nanocomposites made with carbon nanofibers, Polym. Eng. Sci. 48(12) (2008) 2474-2481.
DOI: 10.1002/pen.21205
Google Scholar
[23]
L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon 60 (2013) 16-27.
DOI: 10.1016/j.carbon.2013.03.050
Google Scholar
[24]
Y Ni, L Chen, K.Y. Teng, J Shi, X.M. Qian, Z.W. Xu, X. Tian, C.S. Hu, M.J. Ma, Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces 7 (2015) 11583-11591.
DOI: 10.1021/acsami.5b02552
Google Scholar
[25]
T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, X. Wang. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles, Express Polym. Lett. 7(7) (2013) 585-594.
DOI: 10.3144/expresspolymlett.2013.56
Google Scholar
[26]
Z.G. Fthenakis, Z. Zhu, D. Teich, G. Seifert, D. Tománek. Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes, Phys. Rev. B 88 (2013) 245402.
DOI: 10.1103/physrevb.88.245402
Google Scholar
[27]
Z.G. Fthenakis, D. Tománek. Computational study of the thermal conductivity in defective carbon nanostructures, Phys. Rev. B 86 (2012) 125418.
DOI: 10.1103/physrevb.86.125418
Google Scholar
[28]
S. Berber, Y.K. Kwon, D. Tománek. Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (2000) 4613.
DOI: 10.1103/physrevlett.84.4613
Google Scholar