Three-Dimensional Graphite Filled Poly(Vinylidene Fluoride) Composites with Enhanced Strength and Thermal Conductivity

Article Preview

Abstract:

Three-dimensional (3D) network structure has been recognized as an efficient approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry, and infiltrating with polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m-1 K-1 by 919% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 117% and 563%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. He, Z. Yang, X. Zhou, J. Zhang, L. Pan, and S. Liu. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos. Sci. Technol. 131(2016) 22-31.

DOI: 10.1016/j.compscitech.2016.05.009

Google Scholar

[2] P. Chen, H. Xie, F. Huang, T. Huang, and Y. Ding. Deformation and failure of polymer bonded explosives under diametric compression test. Polym. Test. 25 (3) (2006) 333-41.

DOI: 10.1016/j.polymertesting.2005.12.006

Google Scholar

[3] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based Composite Materials. Nature 442 (2006) 282-6.

DOI: 10.1038/nature04969

Google Scholar

[4] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3) (2008) 902-7.

DOI: 10.1021/nl0731872

Google Scholar

[5] C. Lee, X.D. Wei, J.W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (2008) 385-8.

DOI: 10.1126/science.1157996

Google Scholar

[6] Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 22(10) (2010) 1027-36.

DOI: 10.1002/elan.200900571

Google Scholar

[7] M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh. Graphene for electrochemical sensing and biosensing. Trend. Anal. Chem. 29(9) (2010) 954-65.

DOI: 10.1016/j.trac.2010.05.011

Google Scholar

[8] Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, X.H. Xia. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34 (2012) 125-31.

DOI: 10.1016/j.bios.2012.01.030

Google Scholar

[9] K. Zhang, Y. Zhang, S.R. Wang. Effectively decoupling electrical and thermal conductivity of polymer composites. Carbon 65 (2013) 105-11.

DOI: 10.1016/j.carbon.2013.08.005

Google Scholar

[10] S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.S. Kong, K.W. Paik, S. Jeon. Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization. Adv. Mater. 25 (2013) 732-7.

DOI: 10.1002/adma.201202736

Google Scholar

[11] Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, P.V. Kamat. To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films. J. phys. Chem. Lett. 1 (2010) 2222-7.

DOI: 10.1021/jz100728z

Google Scholar

[12] X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20 (2010) 2801-6.

DOI: 10.1039/b917240h

Google Scholar

[13] X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, Boey F, Zhang H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7 (14) (2011) 1876-902.

DOI: 10.1002/smll.201002009

Google Scholar

[14] K.S. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci 39 (2014) 1934-1972.

DOI: 10.1016/j.progpolymsci.2014.03.001

Google Scholar

[15] X.G. Li, J. Warzywoda, G.B. McKenna, Mechanical responses of a polymer graphene-sheet nano-sandwich, Polymer 55 (2014) 4976-4982.

DOI: 10.1016/j.polymer.2014.08.008

Google Scholar

[16] S. Biswas, H. Fukushima, L.T. Drzal, Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites, Compos. Part A 42 (2011) 371-375.

DOI: 10.1016/j.compositesa.2010.12.006

Google Scholar

[17] X.L. Cui, P. Ding, N. Zhuang, L.Y. Shi, N. Song, S.F. Tang, Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect, ACS Appl. Mater. Interface 7 (2015) 19068-19075.

DOI: 10.1021/acsami.5b04444

Google Scholar

[18] P. Kumar, S. Yu, F. Shahzad, S.M. Hong, Y.H. Kim, C.M. Koo, Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides, Carbon 101 (2016) 120-128.

DOI: 10.1016/j.carbon.2016.01.088

Google Scholar

[19] T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327-331.

DOI: 10.1038/nnano.2008.96

Google Scholar

[20] X.G. Li, G.B. McKenna, Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites, ACS Macro Lett. 1 (2012) 388-391.

DOI: 10.1021/mz200253x

Google Scholar

[21] S. Choi, H. Im, J. Kim, Flexible and high thermal conductivity thin films based on polymer: Aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites, Compos. Part A 43 (2012) 1860-1868.

DOI: 10.1016/j.compositesa.2012.06.009

Google Scholar

[22] S. Agarwal, M.M.K. Khan, R.K. Gupta, Thermal conductivity of polymer nanocomposites made with carbon nanofibers, Polym. Eng. Sci. 48(12) (2008) 2474-2481.

DOI: 10.1002/pen.21205

Google Scholar

[23] L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon 60 (2013) 16-27.

DOI: 10.1016/j.carbon.2013.03.050

Google Scholar

[24] Y Ni, L Chen, K.Y. Teng, J Shi, X.M. Qian, Z.W. Xu, X. Tian, C.S. Hu, M.J. Ma, Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces 7 (2015) 11583-11591.

DOI: 10.1021/acsami.5b02552

Google Scholar

[25] T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, X. Wang. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles, Express Polym. Lett. 7(7) (2013) 585-594.

DOI: 10.3144/expresspolymlett.2013.56

Google Scholar

[26] Z.G. Fthenakis, Z. Zhu, D. Teich, G. Seifert, D. Tománek. Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes, Phys. Rev. B 88 (2013) 245402.

DOI: 10.1103/physrevb.88.245402

Google Scholar

[27] Z.G. Fthenakis, D. Tománek. Computational study of the thermal conductivity in defective carbon nanostructures, Phys. Rev. B 86 (2012) 125418.

DOI: 10.1103/physrevb.86.125418

Google Scholar

[28] S. Berber, Y.K. Kwon, D. Tománek. Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (2000) 4613.

DOI: 10.1103/physrevlett.84.4613

Google Scholar