Graft Copolymerization onto Starch Nanoparticle Using Peroxymonosulfate/ Mandelic Acid as a Novel Redox Pair

Article Preview

Abstract:

Unreported peroxymonosulfate/mandelic acid as a redox pair initiation system has been used to graft copolymerizes acrylonitrile onto our previously prepared starch nanoparticle (SNPs) in aqueous medium under nitrogen atmosphere. Optimization of the grafting conditions was studied and the grafting parameters were expressed in terms of graft yield %, graft reaction efficiency % and homopolymer %. Fourier transformer infrared spectroscopy (FTIR), Scanning electron microscope (SEM) and thermal gravimetric analysis (TGA) techniques confirmed the synthesis of the precursor’s materials and the success of the grafting onto starch nanoparticle. The resultant copolymer was found to be more thermally stable and more resistance to biodegradability than the starch nanoparticle counterparts. Besides, the optimum conditions were obtained when using 1 g starch nanoparticle, 2 ml of AN (based on weight of substrate), 30 m mol/l potassium peroxymonosulphate, 8 m mol/l mandelic acid, 2 hours reaction time and 45°C of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-35

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. M. B. Smeets, S. Imbrogno, S. Bloemberge. Carbohydrate functionalized hybrid latex particles, Carbohydrate Polymers, 173, (2017), 233.

DOI: 10.1016/j.carbpol.2017.05.075

Google Scholar

[2] X. Ma, R. Jian, P. R. Chang, J. Yu,. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites, Bio macromolecules, 9, (2008),3314.

DOI: 10.1021/bm800987c

Google Scholar

[3] J. Y. Kim, S. T. Lim. Preparation of nano-sized starch particles by complex formation with n-butanol, Carbohydrate Polymers, 76, (2009), 110-116.

DOI: 10.1016/j.carbpol.2008.09.030

Google Scholar

[4] D. Liu, Q. Wu, H. Chen, P. R. Chang. Transitional properties of starch colloid with particle size reduction from micro-to nanometer, J. Colloid Interface Sci, 339, (2009), 117.

DOI: 10.1016/j.jcis.2009.07.035

Google Scholar

[5] Kh. M. Mostafa, H.A.M. Ameen, M. Morsy, A. El-Ebissy, M. Adel, A. Salah. Harnessing of non-fibrous textile for production of high performance easy-care cotton fabrics, Pigment and Resin Technology, 48, 2, (2019), 156–168.

DOI: 10.1108/prt-12-2017-0101

Google Scholar

[6] N. Lin, J. Huang, P. R. Chang, L. Feng, J.Yu. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres, Colloids Surf. B 85, (2011), 270.

DOI: 10.1016/j.colsurfb.2011.02.039

Google Scholar

[7] A. Bodin, H. Backdahl, B. Risberg, P. Gatenholm. Nano cellulose as a scaffold for tissue engineered blood vessels, Tissue Eng. 13, (2007), 885.

Google Scholar

[8] Kh. M. Mostafa, H.A.M. Ameen, M. Morsy, A. El-Ebissy, M. Adel, A. Salah. Production of high-performance textiles via pioneering strengthening approach using starch nanoparticles,Journal of Industrial textiles, In press.

DOI: 10.1177/1528083719827365

Google Scholar

[9] KH. Young, Park S. S, S.T. Lim. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B 126, (2015), 607–620.

Google Scholar

[10] A. Srivastava1 and R. Kumar. Synthesis and Characterization of AcrylicAcid-g-(α-Carrageenan) Copolymer and Study of Its Application, International Journal of Carbohydrate Chemistry, 2013, (2013), 1-8.

Google Scholar

[11] Kh. M. Mostafa, H. A. El-Meged, M. S. Morsy, A. El- ebasiy and A. A. Elsanabary. Structural Modification of Starch Nanoparticles via Graft Copolymerization Using KMnO4, HCIO4 and HNO3 redox pair, Journal of Polymer and the Environment,‏ 27, (2019), 996-1006.

DOI: 10.1007/s10924-019-01402-5

Google Scholar

[12] Jaime C. Cazotti, Alexander T. Fritz, Omar Garcia-Valdez, Niels M. B. Smeets, Marc A. Dubé, and Michael F. Cunningham. Grafting from Starch Nanoparticles with Synthetic Polymers via Nitroxide-Mediated Polymerization, Macromol. Rapid Communications. (2019), 1800834.

DOI: 10.1002/marc.201800834

Google Scholar

[13] M. Labet, W. Thielemans, A. Dufresne. Polymer Grafting onto Starch Nanocrystals, Biomacromolecules, 2007, 8, (2007), 2916-2927.

DOI: 10.1021/bm700468f

Google Scholar

[14] S. Song, C. Pan Z Wang, X .Wang. Preparation and characterization of amphiphilic starch nanocrystals, J Appl Polym Sci., 107(1), (2008), 418–422.

DOI: 10.1002/app.27076

Google Scholar

[15] H. Namazi, A. Dadkhah. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids, Carbohydr Polym 79(3), (2010), 731–737.

DOI: 10.1016/j.carbpol.2009.09.033

Google Scholar

[16] XF. Ma, RJ. Jian, PR. Chang, JG. Yu. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticizedstarch composites, Biomacromolecules, 9(11), (2008), 3314–3320.

DOI: 10.1021/bm800987c

Google Scholar

[17] S. Alila, F. Aloulou, W. Thielemans, S. Boufi. Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution, Ind Crops Prod 33, (2011), 350–357.

DOI: 10.1016/j.indcrop.2010.11.010

Google Scholar

[18] Kh. M. Mostafa, E. Osman, R. I. Mahmoud and A. A. El-Sanabary.Towards Synthesis and Characterization of Smart Materials Based on Chitosan Using Mn-IV Itaconic Acid as A Novel Redox Pair, Journal of Polymers and the Environment; 26, (2018) 3250–3261.

DOI: 10.1007/s10924-018-1209-4

Google Scholar

[19] S. Ungeheuer, H. W. Bewersdorff, and R. P. Singh, Turbulent drag effectiveness and shear stability of xanthan-gum-based graft copolymers, Journal of Applied Polymer Science, vol. 37, no. 10, (1989), 2933–2948.

DOI: 10.1002/app.1989.070371012

Google Scholar

[20] J. K. Seaman, Locust bean gum,, in Handbook of Water Soluble Gums and Resins, R. L. Davidson, Ed., p.6–9, McGraw-Hill, New York, NY, USA, (1980).

Google Scholar