[1]
Aizawa, N.; Pu, Y. -J.; Chiba, T.; et al. Instant low-temperature cross-linking of poly(N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices [J]. Adv. Mater. 2014, 26, 7543-7546.
DOI: 10.1002/adma.201402726
Google Scholar
[2]
Stanislovai-tyte, E.; Simokaitiene, J.; Raisys, S.; et al. Carbazole based polymers as Hosts for blue iridium emitters: Synthesis, photophysics and high efficiency PLEDs [J]. J. Mater. Chem. C, 2013, 1, 8209-8221.
DOI: 10.1039/c3tc31441c
Google Scholar
[3]
Xiao, L.; Chen, Z.; Qu, B.; et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices [J]. Adv. Mater. 2011, 23, 926-952.
DOI: 10.1002/adma.201003128
Google Scholar
[4]
Wang, C.; Dong, H.; Hu, W.; et al. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics [J]. Chem. Rev. 2012, 112, 2208-2267.
DOI: 10.1021/cr100380z
Google Scholar
[5]
Blouin, N.; Michaud, A.; Leclerc, M. A Low-band gap poly(2,7-carbazole) derivative for use in high-pPerformance solar cells [J]. Adv.Mater. 2007, 19, 2295-2300.
DOI: 10.1002/adma.200602496
Google Scholar
[6]
Schmidt, A. W.; Reddy, K. R.; Knölker, H. -J. Occurrence, biogenesis, and synthesis of biologically active crbazole alkaloids [J]. Chem. Rev. 2012, 112, 3193-3328.
DOI: 10.1021/cr200447s
Google Scholar
[7]
Pihko A. J, Koskinen A. Synthesis of propellane-containing natural products [J]. Tetrahedron, 2005, 61(37), 8769-8807.
DOI: 10.1016/j.tet.2005.06.013
Google Scholar
[8]
Yu, B. ‐W.; Chen, J. ‐Y.; Wang, Y. ‐Ping.; et al. Alkaloids from menispermum dauricum [J]. Phytochemistry, 2002, 61(4): 439-442.
DOI: 10.1016/s0031-9422(02)00162-0
Google Scholar
[9]
Miao, M.; Cao, J.; Zhang J.; et al. Cu(I)-catalyzed domino reaction of 3-cyclopropylideneprop- 2-en-1-ones [J]. J. Org. Chem. 2013, 44(30), 2687-2692.
DOI: 10.1021/jo302312y
Google Scholar
[10]
Zhang, L. J.; Yan, C. G. One-pot domino reactions for synthesis of heterocyclic[3.3.3] propellanes and spiro[cyclopenta[b]pyridine-4,2'-indenes] [J]. Tetrahedron, 2013, 69(24), 4915- 4921.
DOI: 10.1016/j.tet.2013.04.048
Google Scholar
[11]
Jansonepopova, S.; May, J. A. Synthesis of bridged polycyclic ring systems via carbene cascades terminating in C-H bond insertion [J]. J. Am. Chem. Soc. 2012, 134(43), 17877-17880.
DOI: 10.1021/ja308305z
Google Scholar
[12]
Kotha S , Pulletikurti S . Synthesis of propellanes containing a bicyclo[2.2.2]octene unit\r, via\r, the Diels–Alder reaction and ring-closing metathesis as key steps[J]. RSC Advances, 2018, 8(27): 14906-14915.
DOI: 10.1039/c8ra02687d
Google Scholar
[13]
Rolf, H.; Masanobu, M.; Klaus, H.; et al. 1.4-Dipolare cycloadditionen, II. Dreikomponenten-reaktionen des isochinolinsmit acetylendicarbonsäureester und verschiedenen dipolarophilen [J]. Chem. Ber. 1967, 100, 1094-1106.
DOI: 10.1002/cber.19671000406
Google Scholar
[14]
Huisgen, R. Synthese von heterocyclenmit 1,4-dipolaren cycloadditionen [J]. Zeit. Chem. 2015, 8(8), 290-298.
Google Scholar
[15]
Liu, X. Y.; Tang, X.; Zhao, Y.; et al.. Dispiro and propellane: Novel molecular platforms for highly efficient organic light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2017: acsami.7b15645.
DOI: 10.1021/acsami.7b15645.s001
Google Scholar
[16]
TorresGómez, H.; Daniliuc, C.; Schepmann, D.; et al.. Synthesis of 3-aza[4.4.3]propellanes. with high σ1 receptor affinity [J]. Bioorg. Med. Chem. 2018, 26(8), 1705-1712.
DOI: 10.1016/j.bmc.2018.02.019
Google Scholar
[17]
Naoki, O.; Yousuke, Y.; Hiroshi, T.; et al. Synthesis and properties of tribenzocarbazoles via an acid-promoted retro (2+2)-cycloaddition of azapropellanes [J]. J. Org. Chem. 2018, 83, 7994-8002.
DOI: 10.1021/acs.joc.8b00870
Google Scholar
[18]
Zalkov L. H., Harris R. N. I., Derveer D. V. Modhephene: a sesquiterpenoid carbocyclic [3.3.3]propellane. X-Ray crystal structure of the corresponding diol [J]. J. Chem. Soc. Chem. Commun. 1978, 420-421.
DOI: 10.1039/c39780000420
Google Scholar
[19]
Liljebris, C. Oxidation of protein tyrosine phosphatases as a pharmaceutical mechanism of action: A studyusing 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione [J]. Journal of Pharmacology and Experimental Therapeutics, 2004, 309(2), 711-719.
DOI: 10.1124/jpet.103.062745
Google Scholar
[20]
Beyrati, M.; Hasaninejad, A. One-pot, sequential four-component synthesis of novel heterocyclic[3.3.3]propellane derivatives at room temperature [J]. RSC Adv. 2018, 8(26), 14171-14176.
DOI: 10.1039/c8ra01648h
Google Scholar
[21]
Tian X , Li L , Hu Y , et al. Dichrocephones A and B, two cytotoxic sesquiterpenoids with the unique [3.3.3] propellane nucleus skeleton from Dichrocephala benthamii[J]. RSC Advances, 2013, 3(21): 7880 -7883.
DOI: 10.1039/c3ra23364b
Google Scholar
[22]
Suri S. C. A formal total synthesis of modhephene [J]. Tetrahedron Lett. 1993, 34(51), 8321- 8324.
DOI: 10.1016/s0040-4039(00)61421-1
Google Scholar
[23]
Jasperse, C. P.; Curran, D. P. Sequential radical cyclization approach to propellanetriquinanes. Total synthesis of (+-)-modhephene [J]. J. Am. Chem. Soc. 1990, 112(45), 5601-5609.
DOI: 10.1021/ja00170a025
Google Scholar
[24]
Chin-Kang, S.; Tsong-Shin, J.; Deh-Chi, W. Intramolecular radical cyclization of silylacetylenic or olefinic α-iodo ketones: Application to the total synthesis of (±)-modhephene [J]. Tetrahedron Lett. 1990, 31(26), 3745-3748.
DOI: 10.1016/s0040-4039(00)97460-4
Google Scholar
[25]
Smith, A. B. III.; Jerris, P. J. Total synthesis of (+/-)-modhephene [J]. J. Am. Chem. Soc. 1981, 103, 194-195.
DOI: 10.1021/ja00391a038
Google Scholar
[26]
Torres, E.; Leiva, R.; Gazzarrini, S.; et al. Azapropellanes with anti-Influenza A virus activity [J]. ACS Med. Chem. Lett. 2014, 5(7), 831-836.
DOI: 10.1021/ml500108s
Google Scholar
[27]
Alizadeh, A.; Bayat, F.; Moafi, L.; et al. 5-Hydroxybenzo[g]indoles formation from oxa-aza[3.3.3]propellanes [J]. Tetrahedron, 2015, 71(42), 8150-8154.
DOI: 10.1016/j.tet.2015.08.035
Google Scholar
[28]
Alizadeh, A.; Rezvanian, A.; Zhu, L. G. Synthesis of heterocyclic[3.3.3]propellanes via a sequential four-component reaction [J]. J. Org. Chem. 2012, 77(9), 4385-4390.
DOI: 10.1021/jo300457m
Google Scholar
[29]
Alizadeh, A.; Bayat, F. Highly convergent one-Pot four-component regioselective synthesis of Spiro-pyranopyrazoles and oxa-aza-[3.3.3]propellanes [J]. Helvetica Chimica Acta, 2014, 97(5), 694-700.
DOI: 10.1002/hlca.201300260
Google Scholar
[30]
Pihko, A. J.; Koskinen, A. M. P. Synthesis of propellane-containing natural products [J]. Tetrahedron, 2005, 61(37), 8769-8807.
DOI: 10.1016/j.tet.2005.06.013
Google Scholar
[31]
Jasperse, C. P.; Curran, D. P. Sequential radical cyclization approach to propellanetriquinanes. Total synthesis of (+/-)-modhephene [J]. J. Am. Chem. Soc. 1990, 112(45), 5601-5609.
DOI: 10.1021/ja00170a025
Google Scholar
[32]
Sha, C. K.; Wong, D. C. Intramolecular radical cyclization of silylacetylenic or olefinic α-iodo ketones application to the total synthesis of modhephene [J]. Tetrahedron Lett., 1990, 31(26), 3745-3748.
DOI: 10.1016/s0040-4039(00)97460-4
Google Scholar
[33]
Suri, S. C. A formal total synthesis of modhephene [J]. Tetrahedron Lett., 1993, 34(51), 8321-8324.
DOI: 10.1016/s0040-4039(00)61421-1
Google Scholar
[34]
Karpf, M.; André, S. Dreiding, A. Application of the α-alkynone cyclization: synthesis of rac-modhephene [J]. 1980, 21(47), 4569-4570.
DOI: 10.1016/s0040-4039(00)74553-9
Google Scholar
[35]
Agrawal, J. P. High Energy Materials: Propellant, Explosives and Pyrotechnics; Wiley-VCH: Weinheim, 2010; pp.4-32.
Google Scholar
[36]
Junlin, Z.; Chuan, X.; Lianjie, Z.; et al. Synthesis and properties of the fused aza-polynitrocyclic compounds [J]. Chinese J. Org. Chem. 2016, 36(6), 1197-1027.
Google Scholar
[37]
Zhang, Q.; Zhang, J.; Qi, X.; et al. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives [J]. J. Phy. Chem. A, 2014, 118(45), 10857-10865.
DOI: 10.1021/jp509549q
Google Scholar
[38]
Jun-Lin, Z.; Bo-Zhou, W.; Fu-Qiang, B. I.; et al. Multiple Site N-alkylation reactivity of hexaaza[3.3.3]propellane[J]. Chinese Journal of Explosives & Propellants, 2017, 40(4), 33-37.
Google Scholar
[39]
Lee, B.; Shin, M.; Seo, Y.; et al. Synthesis of 2,4,6,8,9,11-hexaaza[3.3.3]propellanes as a new molecular skeleton for explosives [J]. Tetrahedron, 2018, 74(1) 130-134.
DOI: 10.1016/j.tet.2017.11.046
Google Scholar
[40]
Yunsheng, D.; An, D. S.; Zaifu, P.; et al. Research on and application of Pd/C catalysts for catalytic hydrogenolysis debenzylation [J]. Industrial Catalysis, 2011,19(04): 7-10.
Google Scholar
[41]
Bayat, Y.; Ebrahimi, H.; Fotouhi-Far, F. Optimization of reductive debenzylation of hexabenzylhexaazaisowurtzitane (the Key Step for Synthesis of HNIW) using response surface methodology [J]. Org. Proc. Res. Develop. 2012, 16(11), 1733-1738.
DOI: 10.1021/op300162d
Google Scholar
[42]
Shin, M.; Kim, M. H.; Ha, T. H.; et al. Synthesis of novel 2,4,6,8,10-pentaaza[3.3.3]propellane derivatives[J]. Tetrahedron, 2014, 70(8), 1617-1620.
DOI: 10.1016/j.tet.2014.01.024
Google Scholar
[43]
Kim, Y. G.; Kim, J. S.; Chung, K. H.; et al. Hexaaza[3.3.3]propellane compounds as key intermediates for new molecular explosives and a method for preparing the same [P]. US 8609861, (2013).
Google Scholar
[44]
Zhou, G. -W.; Zhang, L. -Z.; Xue, Y. -H.; et al. The progress of N-benzyl removal [J]. Chinese. J. Org. Chem. 2019, (39), 1-22.
Google Scholar
[45]
Zhu, W. -T,; Gan, H. -F,; Guo, Z. -B,; et al. A new method of N-debenzylation of nitrogen aromatic heterocyclic compounds [J]. Chinese J. Syn. Chem. 2015, 23(10): 977-979.
Google Scholar
[46]
Kroutil, J.; Trnka, T.; Cerny, M. Selective N-debenzylation of benzylamino derivatives of 1,6-anhydro-β-D-hexopyranoses [J]. Orga. Lett. 2000, 2(12), 1681- 1683.
DOI: 10.1021/ol005746g
Google Scholar
[47]
Jia, H.-P.; Ou, Y.-X.; Chen, B.-R.; et al. Progress in the Study of Hexanitrohexaazaisowurtzitane (2)—Debenzylation of N,N-Disubstituted Benzylamine [J]. J. Energ. Mater. 1998, 6, 145-156 (in Chinese).
Google Scholar
[48]
Qiu, W. -G.; Yu, Y. -Z. N-benzyl removal [J]. Syn. Chem. 1998, 6, 34-38 (in Chinese).
Google Scholar
[49]
Brooke, G. M.; Mohammed, S.; Whiting, M. C. A simple amide protecting group: synthesis of oligoamides of Nylon 6 [J]. Chem. Commun. 1997, (16), 1511-1512.
DOI: 10.1039/a703607h
Google Scholar
[50]
Chern, C. Y.; Huang, Y. P.; Kan, W. M. Selective N-debenzylation of amides with p-TsOH [J]. Tetrahedron Lett. 2003, 44(5), 1039-1041.
DOI: 10.1016/s0040-4039(02)02738-7
Google Scholar
[51]
Baker, S. R.; Parsons, A. F.; Wilson, M. A radical approach to debenzylation of amides [J]. Tetrahedron Lett. 1998, 39(3-4), 331-332.
DOI: 10.1016/s0040-4039(97)10480-4
Google Scholar
[52]
Li, J. -R.; Zhou, G. -W.; et al. Stable aza[3,3,3]propellane carbine and preparation method thereof [P]. CN 109456332, (2018).
Google Scholar