Study on Debenzylation of Pentabenzylpentaza[3,3,3]Propellane

Article Preview

Abstract:

Azapropellanes have been extensively studied for their special application. Debenzylation of pentabenzylpentaaza[3,3,3]propellane was studied in this paper. The N-benzyl groups were removed by catalytic hydrogen transfer under the mild conditions with simple process. The yield of the debenzylation product was lower. Their structures of all compounds were confirmed by spectra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-213

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aizawa, N.; Pu, Y. -J.; Chiba, T.; et al. Instant low-temperature cross-linking of poly(N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices [J]. Adv. Mater. 2014, 26, 7543-7546.

DOI: 10.1002/adma.201402726

Google Scholar

[2] Stanislovai-tyte, E.; Simokaitiene, J.; Raisys, S.; et al. Carbazole based polymers as Hosts for blue iridium emitters: Synthesis, photophysics and high efficiency PLEDs [J]. J. Mater. Chem. C, 2013, 1, 8209-8221.

DOI: 10.1039/c3tc31441c

Google Scholar

[3] Xiao, L.; Chen, Z.; Qu, B.; et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices [J]. Adv. Mater. 2011, 23, 926-952.

DOI: 10.1002/adma.201003128

Google Scholar

[4] Wang, C.; Dong, H.; Hu, W.; et al. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics [J]. Chem. Rev. 2012, 112, 2208-2267.

DOI: 10.1021/cr100380z

Google Scholar

[5] Blouin, N.; Michaud, A.; Leclerc, M. A Low-band gap poly(2,7-carbazole) derivative for use in high-pPerformance solar cells [J]. Adv.Mater. 2007, 19, 2295-2300.

DOI: 10.1002/adma.200602496

Google Scholar

[6] Schmidt, A. W.; Reddy, K. R.; Knölker, H. -J. Occurrence, biogenesis, and synthesis of biologically active crbazole alkaloids [J]. Chem. Rev. 2012, 112, 3193-3328.

DOI: 10.1021/cr200447s

Google Scholar

[7] Pihko A. J, Koskinen A. Synthesis of propellane-containing natural products [J]. Tetrahedron, 2005, 61(37), 8769-8807.

DOI: 10.1016/j.tet.2005.06.013

Google Scholar

[8] Yu, B. ‐W.; Chen, J. ‐Y.; Wang, Y. ‐Ping.; et al. Alkaloids from menispermum dauricum [J]. Phytochemistry, 2002, 61(4): 439-442.

DOI: 10.1016/s0031-9422(02)00162-0

Google Scholar

[9] Miao, M.; Cao, J.; Zhang J.; et al. Cu(I)-catalyzed domino reaction of 3-cyclopropylideneprop- 2-en-1-ones [J]. J. Org. Chem. 2013, 44(30), 2687-2692.

DOI: 10.1021/jo302312y

Google Scholar

[10] Zhang, L. J.; Yan, C. G. One-pot domino reactions for synthesis of heterocyclic[3.3.3] propellanes and spiro[cyclopenta[b]pyridine-4,2'-indenes] [J]. Tetrahedron, 2013, 69(24), 4915- 4921.

DOI: 10.1016/j.tet.2013.04.048

Google Scholar

[11] Jansonepopova, S.; May, J. A. Synthesis of bridged polycyclic ring systems via carbene cascades terminating in C-H bond insertion [J]. J. Am. Chem. Soc. 2012, 134(43), 17877-17880.

DOI: 10.1021/ja308305z

Google Scholar

[12] Kotha S , Pulletikurti S . Synthesis of propellanes containing a bicyclo[2.2.2]octene unit\r, via\r, the Diels–Alder reaction and ring-closing metathesis as key steps[J]. RSC Advances, 2018, 8(27): 14906-14915.

DOI: 10.1039/c8ra02687d

Google Scholar

[13] Rolf, H.; Masanobu, M.; Klaus, H.; et al. 1.4-Dipolare cycloadditionen, II. Dreikomponenten-reaktionen des isochinolinsmit acetylendicarbonsäureester und verschiedenen dipolarophilen [J]. Chem. Ber. 1967, 100, 1094-1106.

DOI: 10.1002/cber.19671000406

Google Scholar

[14] Huisgen, R. Synthese von heterocyclenmit 1,4-dipolaren cycloadditionen [J]. Zeit. Chem. 2015, 8(8), 290-298.

Google Scholar

[15] Liu, X. Y.; Tang, X.; Zhao, Y.; et al.. Dispiro and propellane: Novel molecular platforms for highly efficient organic light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2017: acsami.7b15645.

DOI: 10.1021/acsami.7b15645.s001

Google Scholar

[16] TorresGómez, H.; Daniliuc, C.; Schepmann, D.; et al.. Synthesis of 3-aza[4.4.3]propellanes. with high σ1 receptor affinity [J]. Bioorg. Med. Chem. 2018, 26(8), 1705-1712.

DOI: 10.1016/j.bmc.2018.02.019

Google Scholar

[17] Naoki, O.; Yousuke, Y.; Hiroshi, T.; et al. Synthesis and properties of tribenzocarbazoles via an acid-promoted retro (2+2)-cycloaddition of azapropellanes [J]. J. Org. Chem. 2018, 83, 7994-8002.

DOI: 10.1021/acs.joc.8b00870

Google Scholar

[18] Zalkov L. H., Harris R. N. I., Derveer D. V. Modhephene: a sesquiterpenoid carbocyclic [3.3.3]propellane. X-Ray crystal structure of the corresponding diol [J]. J. Chem. Soc. Chem. Commun. 1978, 420-421.

DOI: 10.1039/c39780000420

Google Scholar

[19] Liljebris, C. Oxidation of protein tyrosine phosphatases as a pharmaceutical mechanism of action: A studyusing 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione [J]. Journal of Pharmacology and Experimental Therapeutics, 2004, 309(2), 711-719.

DOI: 10.1124/jpet.103.062745

Google Scholar

[20] Beyrati, M.; Hasaninejad, A. One-pot, sequential four-component synthesis of novel heterocyclic[3.3.3]propellane derivatives at room temperature [J]. RSC Adv. 2018, 8(26), 14171-14176.

DOI: 10.1039/c8ra01648h

Google Scholar

[21] Tian X , Li L , Hu Y , et al. Dichrocephones A and B, two cytotoxic sesquiterpenoids with the unique [3.3.3] propellane nucleus skeleton from Dichrocephala benthamii[J]. RSC Advances, 2013, 3(21): 7880 -7883.

DOI: 10.1039/c3ra23364b

Google Scholar

[22] Suri S. C. A formal total synthesis of modhephene [J]. Tetrahedron Lett. 1993, 34(51), 8321- 8324.

DOI: 10.1016/s0040-4039(00)61421-1

Google Scholar

[23] Jasperse, C. P.; Curran, D. P. Sequential radical cyclization approach to propellanetriquinanes. Total synthesis of (+-)-modhephene [J]. J. Am. Chem. Soc. 1990, 112(45), 5601-5609.

DOI: 10.1021/ja00170a025

Google Scholar

[24] Chin-Kang, S.; Tsong-Shin, J.; Deh-Chi, W. Intramolecular radical cyclization of silylacetylenic or olefinic α-iodo ketones: Application to the total synthesis of (±)-modhephene [J]. Tetrahedron Lett. 1990, 31(26), 3745-3748.

DOI: 10.1016/s0040-4039(00)97460-4

Google Scholar

[25] Smith, A. B. III.; Jerris, P. J. Total synthesis of (+/-)-modhephene [J]. J. Am. Chem. Soc. 1981, 103, 194-195.

DOI: 10.1021/ja00391a038

Google Scholar

[26] Torres, E.; Leiva, R.; Gazzarrini, S.; et al. Azapropellanes with anti-Influenza A virus activity [J]. ACS Med. Chem. Lett. 2014, 5(7), 831-836.

DOI: 10.1021/ml500108s

Google Scholar

[27] Alizadeh, A.; Bayat, F.; Moafi, L.; et al. 5-Hydroxybenzo[g]indoles formation from oxa-aza[3.3.3]propellanes [J]. Tetrahedron, 2015, 71(42), 8150-8154.

DOI: 10.1016/j.tet.2015.08.035

Google Scholar

[28] Alizadeh, A.; Rezvanian, A.; Zhu, L. G. Synthesis of heterocyclic[3.3.3]propellanes via a sequential four-component reaction [J]. J. Org. Chem. 2012, 77(9), 4385-4390.

DOI: 10.1021/jo300457m

Google Scholar

[29] Alizadeh, A.; Bayat, F. Highly convergent one-Pot four-component regioselective synthesis of Spiro-pyranopyrazoles and oxa-aza-[3.3.3]propellanes [J]. Helvetica Chimica Acta, 2014, 97(5), 694-700.

DOI: 10.1002/hlca.201300260

Google Scholar

[30] Pihko, A. J.; Koskinen, A. M. P. Synthesis of propellane-containing natural products [J]. Tetrahedron, 2005, 61(37), 8769-8807.

DOI: 10.1016/j.tet.2005.06.013

Google Scholar

[31] Jasperse, C. P.; Curran, D. P. Sequential radical cyclization approach to propellanetriquinanes. Total synthesis of (+/-)-modhephene [J]. J. Am. Chem. Soc. 1990, 112(45), 5601-5609.

DOI: 10.1021/ja00170a025

Google Scholar

[32] Sha, C. K.; Wong, D. C. Intramolecular radical cyclization of silylacetylenic or olefinic α-iodo ketones application to the total synthesis of modhephene [J]. Tetrahedron Lett., 1990, 31(26), 3745-3748.

DOI: 10.1016/s0040-4039(00)97460-4

Google Scholar

[33] Suri, S. C. A formal total synthesis of modhephene [J]. Tetrahedron Lett., 1993, 34(51), 8321-8324.

DOI: 10.1016/s0040-4039(00)61421-1

Google Scholar

[34] Karpf, M.; André, S. Dreiding, A. Application of the α-alkynone cyclization: synthesis of rac-modhephene [J]. 1980, 21(47), 4569-4570.

DOI: 10.1016/s0040-4039(00)74553-9

Google Scholar

[35] Agrawal, J. P. High Energy Materials: Propellant, Explosives and Pyrotechnics; Wiley-VCH: Weinheim, 2010; pp.4-32.

Google Scholar

[36] Junlin, Z.; Chuan, X.; Lianjie, Z.; et al. Synthesis and properties of the fused aza-polynitrocyclic compounds [J]. Chinese J. Org. Chem. 2016, 36(6), 1197-1027.

Google Scholar

[37] Zhang, Q.; Zhang, J.; Qi, X.; et al. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives [J]. J. Phy. Chem. A, 2014, 118(45), 10857-10865.

DOI: 10.1021/jp509549q

Google Scholar

[38] Jun-Lin, Z.; Bo-Zhou, W.; Fu-Qiang, B. I.; et al. Multiple Site N-alkylation reactivity of hexaaza[3.3.3]propellane[J]. Chinese Journal of Explosives & Propellants, 2017, 40(4), 33-37.

Google Scholar

[39] Lee, B.; Shin, M.; Seo, Y.; et al. Synthesis of 2,4,6,8,9,11-hexaaza[3.3.3]propellanes as a new molecular skeleton for explosives [J]. Tetrahedron, 2018, 74(1) 130-134.

DOI: 10.1016/j.tet.2017.11.046

Google Scholar

[40] Yunsheng, D.; An, D. S.; Zaifu, P.; et al. Research on and application of Pd/C catalysts for catalytic hydrogenolysis debenzylation [J]. Industrial Catalysis, 2011,19(04): 7-10.

Google Scholar

[41] Bayat, Y.; Ebrahimi, H.; Fotouhi-Far, F. Optimization of reductive debenzylation of hexabenzylhexaazaisowurtzitane (the Key Step for Synthesis of HNIW) using response surface methodology [J]. Org. Proc. Res. Develop. 2012, 16(11), 1733-1738.

DOI: 10.1021/op300162d

Google Scholar

[42] Shin, M.; Kim, M. H.; Ha, T. H.; et al. Synthesis of novel 2,4,6,8,10-pentaaza[3.3.3]propellane derivatives[J]. Tetrahedron, 2014, 70(8), 1617-1620.

DOI: 10.1016/j.tet.2014.01.024

Google Scholar

[43] Kim, Y. G.; Kim, J. S.; Chung, K. H.; et al. Hexaaza[3.3.3]propellane compounds as key intermediates for new molecular explosives and a method for preparing the same [P]. US 8609861, (2013).

Google Scholar

[44] Zhou, G. -W.; Zhang, L. -Z.; Xue, Y. -H.; et al. The progress of N-benzyl removal [J]. Chinese. J. Org. Chem. 2019, (39), 1-22.

Google Scholar

[45] Zhu, W. -T,; Gan, H. -F,; Guo, Z. -B,; et al. A new method of N-debenzylation of nitrogen aromatic heterocyclic compounds [J]. Chinese J. Syn. Chem. 2015, 23(10): 977-979.

Google Scholar

[46] Kroutil, J.; Trnka, T.; Cerny, M. Selective N-debenzylation of benzylamino derivatives of 1,6-anhydro-β-D-hexopyranoses [J]. Orga. Lett. 2000, 2(12), 1681- 1683.

DOI: 10.1021/ol005746g

Google Scholar

[47] Jia, H.-P.; Ou, Y.-X.; Chen, B.-R.; et al. Progress in the Study of Hexanitrohexaazaisowurtzitane (2)—Debenzylation of N,N-Disubstituted Benzylamine [J]. J. Energ. Mater. 1998, 6, 145-156 (in Chinese).

Google Scholar

[48] Qiu, W. -G.; Yu, Y. -Z. N-benzyl removal [J]. Syn. Chem. 1998, 6, 34-38 (in Chinese).

Google Scholar

[49] Brooke, G. M.; Mohammed, S.; Whiting, M. C. A simple amide protecting group: synthesis of oligoamides of Nylon 6 [J]. Chem. Commun. 1997, (16), 1511-1512.

DOI: 10.1039/a703607h

Google Scholar

[50] Chern, C. Y.; Huang, Y. P.; Kan, W. M. Selective N-debenzylation of amides with p-TsOH [J]. Tetrahedron Lett. 2003, 44(5), 1039-1041.

DOI: 10.1016/s0040-4039(02)02738-7

Google Scholar

[51] Baker, S. R.; Parsons, A. F.; Wilson, M. A radical approach to debenzylation of amides [J]. Tetrahedron Lett. 1998, 39(3-4), 331-332.

DOI: 10.1016/s0040-4039(97)10480-4

Google Scholar

[52] Li, J. -R.; Zhou, G. -W.; et al. Stable aza[3,3,3]propellane carbine and preparation method thereof [P]. CN 109456332, (2018).

Google Scholar