Enhancing the Photocatalytic Activity of La/Y Co-Doped ZnWO4 under UV Irradiation

Article Preview

Abstract:

In this paper, ZnWO4: La3+, Y3+ photocatalysts were synthesized by a high-temperature solid state reaction method. The effects of La3+ and Y3+ doping contents on the phase, morphologies and optical properties of the samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Diffuse reflectance spectra (DRS), photoluminescence spectra (PL), Raman and UV-visible spectroscopy, respectively. The as-prepared ZnWO4:La3+, Y3+ photocatalysts showed photoluminescence with a broad band emission, and high photocatalytic activity in degradation of rhodamine B (RhB) under simulated UV irradiation. The results showed that co-doping in ZnWO4 can enhance light harvesting capability to generate more electron-hole pairs, and acted as a trap center by decreasing the recombination of photogenerated electrons and holes. All the results obtained by the work suggest that ZnWO4: La3+, Y3+ photocatalysts are promising materials for the photocatalytic decomposition of pollutants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-222

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. AlSalka, A. Hakki, J. Schneider, and D. W. Bahnemann: Appl. Catal. B Environ. Vol. 238 (2018), pp.422-433.

Google Scholar

[2] M. Pirhashemi and A. Habibi-Yangjeh: J. Mater. Sci. Technol. Vol. 34 (2018), pp.1891-1901.

Google Scholar

[3] P. Yan, D. Li, X. Ma, J. Xue, Y. Zhang, and M. Liu: Photochem. Photobiol. Sci. Vol. 17 (2018), pp.1084-1090.

Google Scholar

[4] R. S. Yadav, S. J. Dhoble, and S. B. Rai: Sensors Actuators, B Chem. Vol. 273 (2018), pp.1425-1434.

Google Scholar

[5] J. Liu and D. He: J. CO2 Util. Vol. 26 (2018), pp.370-379.

Google Scholar

[6] M. Zhao, Y. Liu, D. Liu, S. Ma, and K. Wang: J. Mater. Sci. Vol. 53 (2018), pp.11512-11523.

Google Scholar

[7] L. Lin, L. Li, S. Hussain, S. Zhao, L. Wu, X. Peng and N. Hu: Appl. Surf. Sci. Vol. 452 (2018), pp.113-122.

Google Scholar

[8] S. Kundu, L. Ma, Y. Chen, and H. Liang: J. Photochem. Photobiol. A Chem. Vol. 346 (2018), pp.249-264.

Google Scholar

[9] J. Ke, C. Niu, J. Zhang, and G. Zeng: J. Mol. Catal. A Chem. Vol. 395 (2014), pp.276-282.

Google Scholar

[10] Z. Liu, J. Tian, D. Zeng, C. Yu, L. Zhu, W. Huang,K. Yang and D. Li: Mater. Res. Bull. Vol. 94 (2017), pp.298-306.

Google Scholar

[11] S. Deng, W. Zhang, Z. Hu, Z. Feng, P. Hu, H. Wu, L. Ma, Y. Pan, Y. Zhu and G. Xiong: Appl. Phys. A Mater. Sci. Process. Vol. 124 (2018), pp.1-8.

Google Scholar

[12] T. D. Savić, I. L. Validžić, T. B. Novaković, Z. M. Vuković, and M. I. Čomor: J. Clust. Sci. Vol. 24 (2013), pp.679-688.

DOI: 10.1007/s10876-013-0562-7

Google Scholar

[13] J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, and T. Thongtem: Superlattices Microstruct. Vol. 67 (2014), pp.197-206.

DOI: 10.1016/j.spmi.2013.12.024

Google Scholar

[14] F. Zhang, R. Sun, R. Li, N. Song, L. Feng, S. Zhong and Z. Zhao: J. Sol-Gel Sci. Technol. Vol. 86 (2018), pp.640-649.

Google Scholar

[15] P. Du, T. Su, X. Luo, X. Zhou, Z. Qin, H. Ji and J. Chen: Chinese J. Chem. Vol. 36 (2018), pp.538-544.

Google Scholar

[16] F. Tian, R. Zhu, Y. He, and F. Ouyang: Int. J. Hydrogen Energy Vol. 39 (2014), pp.6335-6344.

Google Scholar

[17] B. Ohtani, Chemi. Lett. Vol. 37(2008), pp.216-229.

Google Scholar

[18] J. Yu, J. Xiong, B. Cheng, Y. Yu, and J. Wang: J. Solid State Chem. Vol. 178 (2005), pp.1968-1972.

Google Scholar

[19] M. Zhao, Y. Liu, S. Ma, D. Liu, and K. Wang: J. Lumin. Vol. 202 (2018), pp.57-64.

Google Scholar

[20] D. Cabrera-German, G. Molar-Velázquez, G. Gómez-Sosa, W. de la Cruz, and A. Herrera-Gomez: Surf. Interface Anal. Vol. 49 (2017), pp.1078-1087.

DOI: 10.1002/sia.6280

Google Scholar

[21] Y. Du, M. S. Zhang, J. Hong, Y. Shen, Q. Chen, and Z. Yin: Appl. Phys. A Mater. Sci. Process. Vol. 76 (2003), pp.171-176.

Google Scholar

[22] Z. X. Mu, J. Z. Sun, H. Wang, and Y. M. Wang: J. Nucl. Mater. Vol. 493 (2017), pp.442-447.

Google Scholar

[23] J. Banerjee, V. Bojan, C. G. Pantano, and S. H. Kim: J. Am. Ceram. Soc. Vol. 101 (2018), pp.644-656.

Google Scholar

[24] N. Nedelko, S. Lewinska, A. Pashchenko, I. Radelytskyi, R. Diduszko, E. Zubov, W. Lisowski, J.W. Sobczak, K. Dyakonov, A. Ślawska-Waniewska, V. Dyakonow and H. Szymczak: J. Alloys Compd. Vol. 640 (2015), pp.433-439.

DOI: 10.1016/j.jallcom.2015.03.126

Google Scholar

[25] R. M. Jafer, E. Coetsee, A. Yousif, R. E. Kroon, O. M. Ntwaeaborwa, and H. C. Swart: Appl. Surf. Sci. Vol. 332 (2015), pp.198-204.

DOI: 10.1016/j.apsusc.2015.01.009

Google Scholar

[26] X. Zhang, Y. Guo, J. Tian, B. Sun, Z. Liang, X. Xu and H. Cui: Appl. Catal. B Environ., Vol. 232(2018), pp.355-364.

Google Scholar

[27] Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, and H. Cui: Appl. Catal. B Environ.,(2019), pp.711-720.

Google Scholar

[28] M. A. M. Khan, S. Kumar, A. N. Alhazaa, and M. A. Al-Gawati: Mater. Sci. Semicond. Process. Vol. 87 (2018), pp.134-141.

Google Scholar

[29] P. Meng, J. Huang, and X. Liu: Appl. Surf. Sci., Vol. 465(2019), pp.125-135.

Google Scholar

[30] E. S. Babu, B. J. Rani, G. Ravi, R. Yuvakkumar, R. K. Guduru, V. Ganesh and S. Kim: Mater. Lett. Vol. 220 (2018), pp.209-212.

DOI: 10.1016/j.matlet.2018.03.018

Google Scholar

[31] M. Taghavi, M. H. Ehrampoush, M. T. Ghaneian, M. Tabatabaee, and Y. Fakhri: J. Clean. Prod. Vol. 197 (2018), pp.1447-1453.

Google Scholar

[32] S. S. Imam, R. Adnan, and N. H. M. Kaus: Res. Chem. Intermed. Vol. 44 (2018), pp.5357-5376.

Google Scholar