[1]
K. Sivashanmugan, C.H. Lin, S.H. Hsu, T.F. Guo, T.C. Wen, Interfacial engineering of ZnO surface modified with poly-vinylpyrrolidone and p-aminobenzoic acid for high-performance perovskite solar cells, Mat. Chem. Phys. 219 (2018) 90-95.
DOI: 10.1016/j.matchemphys.2018.08.022
Google Scholar
[2]
M.S. Park, J.H. Lee, Y. Park, R. Yoo, S. Park, H. Jung, W. Kim, H.S. Lee, W. Lee, Doping effects of ZnO quantum dots on the sensitive and selective detection of acetylene for dissolved-gas analysis applications of transformer oil, Sensor. Actuat. B-Chem. 299 (2019) 126992-127001.
DOI: 10.1016/j.snb.2019.126992
Google Scholar
[3]
R. Alsharafi, Y.B. Zhu, F.S. Li, Z.W. Xu, H.L. Hu, T.L. Guo, Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer, Org. Electron. 75 (2019) 105411-105417.
DOI: 10.1016/j.orgel.2019.105411
Google Scholar
[4]
S. Kaviya, S. Kabila, K.V. Jayasree, Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions, Mater. Res. Bull. 95 (2017) 163-168.
DOI: 10.1016/j.materresbull.2017.07.025
Google Scholar
[5]
A.N. Okte, D. Karamanis, E. Chalkia, D. Tuncel, The effect of ZnO or TiO2 loaded nanoparticles on the adsorption and photocatalytic performance of Cu-BTC and ZIF-8 MOFs, Mater. Chem. Phys. 187 (2017) 5-10.
DOI: 10.1016/j.matchemphys.2016.11.059
Google Scholar
[6]
P. Bharathi, M. K. Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M. G. Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Y. Hayakawa, Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications, Appl. Surf. Sci. 499 (2020)143857-143867.
DOI: 10.1016/j.apsusc.2019.143857
Google Scholar
[7]
Z.Y. Zhou, F. Zhang, J.L. Wang, X.H. Zhang, W.Y. Xu, R.F. Wu, L. Liao, X.L. Wang, J.C. Wei, L-cysteine modified ZnO: Small change while great progress, Mat. Sci. Eng. C 103 (2019) 109818-109824.
DOI: 10.1016/j.msec.2019.109818
Google Scholar
[8]
Y.B. Jin, J.T. Long, X. Ma, T.H. Zhou, Z.Z. Zhang, H.X. Lin, J.L. Long, X.X. Wang, Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties, Appl. Catal. B-Environ. 256 (2019) 117873-117880.
DOI: 10.1016/j.apcatb.2019.117873
Google Scholar
[9]
M. Faisal, Farid A. Harraz, A.E. Al-Salami, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor, Mat. Chem. Phys. 214 (2018) 126-134.
DOI: 10.1016/j.matchemphys.2018.04.085
Google Scholar
[10]
F. Copur, N. Bekar, E. Zor, S. Alpaydin, H. Bingol, Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots, Sensor. Actuat. B-Chem. 279 (2019) 305-312.
DOI: 10.1016/j.snb.2018.10.026
Google Scholar
[11]
A. Samar, P.E.C. Lai, Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates, Talanta 169 (2017) 115-122.
DOI: 10.1016/j.talanta.2017.03.019
Google Scholar
[12]
K.X. Zhang, Y.X. Yu, S.Q. Sun, Facile synthesis l-cysteine capped CdS:Eu quantum dots and their Hg2+ sensitive properties, Appl. Surf. Sci. 276 (2013) 333-339.
DOI: 10.1016/j.apsusc.2013.03.093
Google Scholar
[13]
T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks, Food Chem. 213 (2016) 306-312.
DOI: 10.1016/j.foodchem.2016.06.091
Google Scholar
[14]
G.M. Durán, M.R. Plata, M. Zougagh, A.M. Contento, Á. Ríos, Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides, J. Colloid. Interf. Sci. 428 (2014) 235-241.
DOI: 10.1016/j.jcis.2014.04.050
Google Scholar
[15]
X.X. Li, Z. Chen, Z.Y. Yu, X.Y. Huang, Q.M. Yu, S.Z. Wang, Z.M. Wang, D.Q. Wan, M.H. Luo, Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides, J. Lumin. 190 (2017) 364-370.
DOI: 10.1016/j.jcis.2014.04.050
Google Scholar
[16]
E.F. Kaelble, Handbook of X-rays, McGraw-Hill, New York, (1967).
Google Scholar
[17]
Z. Chen, S. Zhou, Y. Li, X.X. Li, Y.S Li, W. Sun, G.H. Liu, N. Chen and G.P. Du, Strong blue luminescence of O2--doped ZnS nanoparticles synthesized by a low temperature solid state reaction method, Mat. Sci. Semicon. Proc. 16 (2013) 833-837.
DOI: 10.1016/j.mssp.2013.01.007
Google Scholar
[18]
D.A. Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, J.L. Rao, Effect of Mn co-doping on the structural, optical and magnetic properties of ZnS:Cr nanoparticles, J. Alloy. Compd. 537 (2012) 208-215.
DOI: 10.1016/j.jallcom.2012.04.115
Google Scholar
[19]
J.I. Pankove, Optical Processes in Semiconductors, Prentice-Hall Inc., USA, (1971).
Google Scholar
[20]
S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D. Becker, T. Homann, T. Bredow, Optical band gap in the system ZnO1-xSx. An experimental and quantum chemical study, J. Mater. Sci. 42 (2007) 1965-1971.
DOI: 10.1007/s10853-006-0415-y
Google Scholar
[21]
Q. Shan, K. Li, Z. Xue, Y. Lin, H. Yin, R. Zhu, Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots, J. Appl. Phys. 119 (2016) 054301-054307.
DOI: 10.1063/1.4940362
Google Scholar
[22]
T.J. Sun, J.S. Qiu, C.H. Liang, Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays, J. Phys. Chem. C 112 (2008) 715-721.
DOI: 10.1021/jp710071f
Google Scholar
[23]
Y.Q. Chen, J. Jiang, Z.Y. He, Y. Su, D. Cai, L. Chen, Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs, Mater. Lett. 59 (2005) 3280-3283.
DOI: 10.1016/j.matlet.2005.05.059
Google Scholar
[24]
Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 78 (2001) 407-409.
DOI: 10.1063/1.1342050
Google Scholar
[25]
L.L. Zhang, C.X. Guo, J.G. Chen, J.T. Hu, The synthesis of one-dimensional controllable ZnO microrods, Chinese Phys. 14 (2005) 0586-0591.
Google Scholar
[26]
K.T. Roro, J.K. Dangbegnon, S.S. Varaya, A.W.R. Leitch, J.R. Botha, Influence of metal organic chemical vapor deposition growth parameters on the luminescent properties of ZnO thin films deposited on glass substrates, J. Appl. Phys. 103 (2008) 053516-053524.
DOI: 10.1063/1.2873872
Google Scholar
[27]
S.S. Warule, N.S. Chaudhari, R.T. Shisode, K.V. Desa, B.B. Kale, M.A. More, Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour, Cryst. Eng. Comm. 17 (2015) 140-148.
DOI: 10.1039/c4ce01738b
Google Scholar
[28]
N. Qin, Q. Xiang, H.B. Zhao, J.C. Zhang, J.Q. Xu, Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties, Cryst. Eng. Comm. 16 (2014) 7062-7073.
DOI: 10.1039/c4ce00637b
Google Scholar
[29]
D.C. Reynolds, D.C. Look, B. Jogai, Fine structure on the green band in ZnO, J. Appl. Phys. 89 (2001) 6189-6191.
DOI: 10.1063/1.1356432
Google Scholar
[30]
A.V. Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104 (2000) 1715-1723.
Google Scholar
[31]
Y.W. Heo, D.P. Norton, S.J. Pearton, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, J. Appl. Phys. 98 (2005) 073502-073508.
DOI: 10.1063/1.2064308
Google Scholar
[32]
A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C. Y.Kwong, K.W. Cheah, T.K. Gundu Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Adv. Funct. Mater. 14 (2004) 856-864.
DOI: 10.1002/adfm.200305082
Google Scholar
[33]
H.F. Zhang, Z. Tao, W.G. Xu, S.X. Lu, F. Yuan, First-principles study of dopants and defects in S-doped ZnO and its effect on photocatalytic activity, Comp. Mater. Sci. 58 (2012) 119-124.
DOI: 10.1016/j.commatsci.2012.01.016
Google Scholar
[34]
E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol–gel process, Appl. Surf. Sci. 346 (2015) 111-114.
DOI: 10.1016/j.apsusc.2015.03.207
Google Scholar
[35]
Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform, Chem. Eur. J. 20 (2014) 2254-2263.
DOI: 10.1002/chem.201304374
Google Scholar
[36]
J. Mei, Y. Hong, J.W.Y. Lam, A. Qin, Y. Tang, B.Z. Tang, Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts, Adv. Mater. 26 (2014) 5429-5479.
DOI: 10.1002/adma.201401356
Google Scholar
[37]
Z. Wu, J. Liu, Y. Gao, H. Liu, T. Li, H. Zou, Z. Wang, K. Zhang, Y. Wang, H. Zhang, B. Yang, Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property, J. Am. Chem. Soc. 137 (2015) 12906-12918.
DOI: 10.1021/jacs.5b06550
Google Scholar