Effects of L-Cysteine on the Photoluminescence Properties of ZnO:S Quantum Dots

Article Preview

Abstract:

ZnO:S quantum dots (QDs) were synthesized by a microwave hydrothermal method. The effects of L-cysteine (L-cys) on the crystal structure, size, morphology, band gap energy and photoluminescence (PL) properties were studied by XRD, EDS, TEM, FTIR, DRS and PL spectroscopy, respectively. The XRD results showed that all samples had a wurtzite structure ZnO crystal structure and the average crystallite size was 8.4, 5.8, and 9.2 nm for ZnO, ZnO:S and L-cys capped ZnO:S (LZOS) QDs, respectively. The EDS, HRTEM and FTIR results confirmed L-cys was capped on the surface of ZnO:S QDs. It was found that the band gap energy was 3.25, 3.29 and 3.31 eV for ZnO, ZnO:S and LZOS QDs, successively. PL spectrum of ZnO QDs showed two emission peaks in the UV and visible region, respectively. When doping S into ZnO, the intensity of the UV emission reduced, while the intensity of the visible emission dramatically increased. Also, L-cys coated obviously enhanced the PL intensity of ZnO:S QDs. This work suggested that LZOS QDs could be applied in luminescent devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-250

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sivashanmugan, C.H. Lin, S.H. Hsu, T.F. Guo, T.C. Wen, Interfacial engineering of ZnO surface modified with poly-vinylpyrrolidone and p-aminobenzoic acid for high-performance perovskite solar cells, Mat. Chem. Phys. 219 (2018) 90-95.

DOI: 10.1016/j.matchemphys.2018.08.022

Google Scholar

[2] M.S. Park, J.H. Lee, Y. Park, R. Yoo, S. Park, H. Jung, W. Kim, H.S. Lee, W. Lee, Doping effects of ZnO quantum dots on the sensitive and selective detection of acetylene for dissolved-gas analysis applications of transformer oil, Sensor. Actuat. B-Chem. 299 (2019) 126992-127001.

DOI: 10.1016/j.snb.2019.126992

Google Scholar

[3] R. Alsharafi, Y.B. Zhu, F.S. Li, Z.W. Xu, H.L. Hu, T.L. Guo, Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer, Org. Electron. 75 (2019) 105411-105417.

DOI: 10.1016/j.orgel.2019.105411

Google Scholar

[4] S. Kaviya, S. Kabila, K.V. Jayasree, Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions, Mater. Res. Bull. 95 (2017) 163-168.

DOI: 10.1016/j.materresbull.2017.07.025

Google Scholar

[5] A.N. Okte, D. Karamanis, E. Chalkia, D. Tuncel, The effect of ZnO or TiO2 loaded nanoparticles on the adsorption and photocatalytic performance of Cu-BTC and ZIF-8 MOFs, Mater. Chem. Phys. 187 (2017) 5-10.

DOI: 10.1016/j.matchemphys.2016.11.059

Google Scholar

[6] P. Bharathi, M. K. Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M. G. Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Y. Hayakawa, Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications, Appl. Surf. Sci. 499 (2020)143857-143867.

DOI: 10.1016/j.apsusc.2019.143857

Google Scholar

[7] Z.Y. Zhou, F. Zhang, J.L. Wang, X.H. Zhang, W.Y. Xu, R.F. Wu, L. Liao, X.L. Wang, J.C. Wei, L-cysteine modified ZnO: Small change while great progress, Mat. Sci. Eng. C 103 (2019) 109818-109824.

DOI: 10.1016/j.msec.2019.109818

Google Scholar

[8] Y.B. Jin, J.T. Long, X. Ma, T.H. Zhou, Z.Z. Zhang, H.X. Lin, J.L. Long, X.X. Wang, Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties, Appl. Catal. B-Environ. 256 (2019) 117873-117880.

DOI: 10.1016/j.apcatb.2019.117873

Google Scholar

[9] M. Faisal, Farid A. Harraz, A.E. Al-Salami, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor, Mat. Chem. Phys. 214 (2018) 126-134.

DOI: 10.1016/j.matchemphys.2018.04.085

Google Scholar

[10] F. Copur, N. Bekar, E. Zor, S. Alpaydin, H. Bingol, Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots, Sensor. Actuat. B-Chem. 279 (2019) 305-312.

DOI: 10.1016/j.snb.2018.10.026

Google Scholar

[11] A. Samar, P.E.C. Lai, Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates, Talanta 169 (2017) 115-122.

DOI: 10.1016/j.talanta.2017.03.019

Google Scholar

[12] K.X. Zhang, Y.X. Yu, S.Q. Sun, Facile synthesis l-cysteine capped CdS:Eu quantum dots and their Hg2+ sensitive properties, Appl. Surf. Sci. 276 (2013) 333-339.

DOI: 10.1016/j.apsusc.2013.03.093

Google Scholar

[13] T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks, Food Chem. 213 (2016) 306-312.

DOI: 10.1016/j.foodchem.2016.06.091

Google Scholar

[14] G.M. Durán, M.R. Plata, M. Zougagh, A.M. Contento, Á. Ríos, Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides, J. Colloid. Interf. Sci. 428 (2014) 235-241.

DOI: 10.1016/j.jcis.2014.04.050

Google Scholar

[15] X.X. Li, Z. Chen, Z.Y. Yu, X.Y. Huang, Q.M. Yu, S.Z. Wang, Z.M. Wang, D.Q. Wan, M.H. Luo, Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides, J. Lumin. 190 (2017) 364-370.

DOI: 10.1016/j.jcis.2014.04.050

Google Scholar

[16] E.F. Kaelble, Handbook of X-rays, McGraw-Hill, New York, (1967).

Google Scholar

[17] Z. Chen, S. Zhou, Y. Li, X.X. Li, Y.S Li, W. Sun, G.H. Liu, N. Chen and G.P. Du, Strong blue luminescence of O2--doped ZnS nanoparticles synthesized by a low temperature solid state reaction method, Mat. Sci. Semicon. Proc. 16 (2013) 833-837.

DOI: 10.1016/j.mssp.2013.01.007

Google Scholar

[18] D.A. Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, J.L. Rao, Effect of Mn co-doping on the structural, optical and magnetic properties of ZnS:Cr nanoparticles, J. Alloy. Compd. 537 (2012) 208-215.

DOI: 10.1016/j.jallcom.2012.04.115

Google Scholar

[19] J.I. Pankove, Optical Processes in Semiconductors, Prentice-Hall Inc., USA, (1971).

Google Scholar

[20] S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D. Becker, T. Homann, T. Bredow, Optical band gap in the system ZnO1-xSx. An experimental and quantum chemical study, J. Mater. Sci. 42 (2007) 1965-1971.

DOI: 10.1007/s10853-006-0415-y

Google Scholar

[21] Q. Shan, K. Li, Z. Xue, Y. Lin, H. Yin, R. Zhu, Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots, J. Appl. Phys. 119 (2016) 054301-054307.

DOI: 10.1063/1.4940362

Google Scholar

[22] T.J. Sun, J.S. Qiu, C.H. Liang, Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays, J. Phys. Chem. C 112 (2008) 715-721.

DOI: 10.1021/jp710071f

Google Scholar

[23] Y.Q. Chen, J. Jiang, Z.Y. He, Y. Su, D. Cai, L. Chen, Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs, Mater. Lett. 59 (2005) 3280-3283.

DOI: 10.1016/j.matlet.2005.05.059

Google Scholar

[24] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 78 (2001) 407-409.

DOI: 10.1063/1.1342050

Google Scholar

[25] L.L. Zhang, C.X. Guo, J.G. Chen, J.T. Hu, The synthesis of one-dimensional controllable ZnO microrods, Chinese Phys. 14 (2005) 0586-0591.

Google Scholar

[26] K.T. Roro, J.K. Dangbegnon, S.S. Varaya, A.W.R. Leitch, J.R. Botha, Influence of metal organic chemical vapor deposition growth parameters on the luminescent properties of ZnO thin films deposited on glass substrates, J. Appl. Phys. 103 (2008) 053516-053524.

DOI: 10.1063/1.2873872

Google Scholar

[27] S.S. Warule, N.S. Chaudhari, R.T. Shisode, K.V. Desa, B.B. Kale, M.A. More, Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour, Cryst. Eng. Comm. 17 (2015) 140-148.

DOI: 10.1039/c4ce01738b

Google Scholar

[28] N. Qin, Q. Xiang, H.B. Zhao, J.C. Zhang, J.Q. Xu, Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties, Cryst. Eng. Comm. 16 (2014) 7062-7073.

DOI: 10.1039/c4ce00637b

Google Scholar

[29] D.C. Reynolds, D.C. Look, B. Jogai, Fine structure on the green band in ZnO, J. Appl. Phys. 89 (2001) 6189-6191.

DOI: 10.1063/1.1356432

Google Scholar

[30] A.V. Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104 (2000) 1715-1723.

Google Scholar

[31] Y.W. Heo, D.P. Norton, S.J. Pearton, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, J. Appl. Phys. 98 (2005) 073502-073508.

DOI: 10.1063/1.2064308

Google Scholar

[32] A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C. Y.Kwong, K.W. Cheah, T.K. Gundu Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Adv. Funct. Mater. 14 (2004) 856-864.

DOI: 10.1002/adfm.200305082

Google Scholar

[33] H.F. Zhang, Z. Tao, W.G. Xu, S.X. Lu, F. Yuan, First-principles study of dopants and defects in S-doped ZnO and its effect on photocatalytic activity, Comp. Mater. Sci. 58 (2012) 119-124.

DOI: 10.1016/j.commatsci.2012.01.016

Google Scholar

[34] E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol–gel process, Appl. Surf. Sci. 346 (2015) 111-114.

DOI: 10.1016/j.apsusc.2015.03.207

Google Scholar

[35] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform, Chem. Eur. J. 20 (2014) 2254-2263.

DOI: 10.1002/chem.201304374

Google Scholar

[36] J. Mei, Y. Hong, J.W.Y. Lam, A. Qin, Y. Tang, B.Z. Tang, Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts, Adv. Mater. 26 (2014) 5429-5479.

DOI: 10.1002/adma.201401356

Google Scholar

[37] Z. Wu, J. Liu, Y. Gao, H. Liu, T. Li, H. Zou, Z. Wang, K. Zhang, Y. Wang, H. Zhang, B. Yang, Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property, J. Am. Chem. Soc. 137 (2015) 12906-12918.

DOI: 10.1021/jacs.5b06550

Google Scholar