Synthesis, Single Crystal X-Ray Structure, Hirshfeld Surface Analysis of a New Isopolymolybdate Based Supramolecular Hybrid

Article Preview

Abstract:

Design and synthesis of supramolecular hybrids with low dimensionality is currently an attractive research topic. The reaction of Schiff base metal complex with isopolymolybdate leads to the isolation of a new isopolymolybdate based supramolecular hybrid, [Mn(salen)(H2O)2]2[Mo8O26]Na2·2H2O (1) (salen = N,N'-bis(salicylidene)ethylenediamine). The supramolecular hybrid was characterized by single crystal X-ray structure analyses, elemental analyses and X-ray crystallography. Crystal data for 1: triclinic, P-1, a=10.0206(8)Å, b = 11.7416(10)Å, c= 13.1494(13)Å, V = 1382.8(2)Å3, Z= 1, Rgt(F) = 0.0353 and wRref(F2) = 0.1009. Structural analyses reveal that 1 represents the first example of [Mo8O26]4- chains formed POM-Schiff-base hybrid. Hirshfeld surface analysis and fingerprint plots are used for decoding intermolecular interactions in 1. Additionally, magnetic property of 1 indicates that there is an antiferromagnetic coupling between the metal centers in the complex.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-230

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li, X. X. Li, T. Yang, Z. W. Cai and S. T. Zheng: Angew Chem Int Edit, Vol. 56 (2017), pp.2664-2669.

Google Scholar

[2] S. Roy, S. Sarkar, J. Pan, U. V. Waghmare, R. Dhanya, C. Narayana and S. C. Peter: Inorg Chem, Vol. 55 (2016), pp.3364-3377.

DOI: 10.1021/acs.inorgchem.5b02718

Google Scholar

[3] L. Jin, X. X. Li, Y. J. Qi, P. P. Niu and S. T. Zheng: Angew Chem Int Edit, Vol. 55 (2016), pp.13793-13797.

Google Scholar

[4] H. Y. An, L. Wang, Y. Hu, T. Q. Xu and Y. J. Hou: Inorg Chem, Vol. 55 (2016), pp.144-153.

Google Scholar

[5] Y. Li, Y.-G. Li, Z.-M. Zhang, Q. Wu and E.-B. Wang: Inorg. Chem. Commun., Vol. 12 (2009), pp.864-867.

Google Scholar

[6] A. Fuertes, M. Juanes, J. R. Granja and J. Montenegro: Chem Commun, Vol. 53 (2017), pp.7861-7871.

DOI: 10.1039/c7cc02997g

Google Scholar

[7] Q. Gao, X. L. Wang, J. Xu and X. H. Bu: Chem-Eur J, Vol. 22 (2016), pp.9082-9086.

Google Scholar

[8] F. Dielmann, E. V. Peresypkina, B. Kramer, F. Hastreiter, B. P. Johnson, M. Zabel, C. Heindl and M. Scheer: Angew Chem Int Edit, Vol. 55 (2016), pp.14833-14837.

DOI: 10.1002/anie.201606074

Google Scholar

[9] S. Polarz, S. Landsmann and A. Klaiber: Angewandte Chemie - International Edition, Vol. 53 (2014), pp.946-954.

DOI: 10.1002/anie.201303159

Google Scholar

[10] Z. Chen, M. Chen, Y. L. Yu and L. M. Wu: Chem Commun, Vol. 53 (2017), pp.1989-1992.

Google Scholar

[11] A. Broggi, H. Kim, J. Jung, M. P. Bracciale, M. L. Santarelli, C. Kim and A. Marrocchi: Macromol Chem Physic, Vol. 218 (2017), p.

DOI: 10.1002/macp.201600487

Google Scholar

[12] S. S. Braga, J. Marques, J. A. Fernandes, F. A. A. Paz, M. P. M. Marques, T. M. Santos and A. M. S. Silva: Chem Pap, Vol. 71 (2017), pp.1235-1248.

Google Scholar

[13] Q. Wu, Q. Pu, Y. Wu, H. Shi, Y. He, J. Li and Q. Fan: J. Coord. Chem., Vol. 68 (2015), pp.1010-1020.

Google Scholar

[14] Q. Wu, Y.-G. Li, Y.-H. Wang, R. Clérac, Y. Lu and E.-B. Wang: Chem. Commun., Vol. DOI 10.1039/b909246c(2009), pp.5743-5745.

Google Scholar

[15] C. G. Williams, M. Wang, D. Skomski, C. D. Tempas, L. L. Kesmodel and S. L. Tait: J Phys Chem C, Vol. 121 (2017), pp.13183-13190.

DOI: 10.1021/acs.jpcc.7b02809

Google Scholar

[16] A. Uslu and E. Ozcan: J Mol Struct, Vol. 1142 (2017), pp.116-121.

Google Scholar

[17] E. R. T. Tiekink: Coordin Chem Rev, Vol. 345 (2017), pp.209-228.

Google Scholar

[18] M. L. Wei, J. J. Sun and X. Y. Duan: Eur J Inorg Chem, Vol. 2014 (2014), pp.345-351.

Google Scholar

[19] L. C. Xuan and Q. J. Pan: Chinese Chem Lett, Vol. 23 (2012), pp.859-862.

Google Scholar

[20] H. H. Wu, Z. M. Zhang and E. B. Wang: Chinese Chem Lett, Vol. 23 (2012), pp.355-358.

Google Scholar

[21] Y. Sawada, W. Kosaka, Y. Hayashi and H. Miyasaka: Inorg Chem, Vol. 51 (2012), pp.4824-4832.

Google Scholar

[22] E. A. L. Boudreaux and L. N. Mulay: Journal of Magnetic Resonance, Vol. 27 (1976), p.356.

Google Scholar

[23] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann: J. Appl. Crystallogr., Vol. 42 (2010), pp.339-341.

Google Scholar

[24] A. L. Spek: Acta Crystallogr D, Vol. D65 (2009), pp.148-155.

Google Scholar

[25] M. A. Spackman and D. Jayatilaka: CrystEngComm, Vol. 11 (2009), pp.19-32.

Google Scholar

[26] H. F. Clausen, M. S. Chevallier, M. A. Spackman and B. B. Iversen: New J. Chem., Vol. 34 (2010), pp.193-199.

Google Scholar

[27] J. J. McKinnon, M. A. Spackman and A. S. Mitchell: Acta Crystallographica Section B, Vol. 60 (2004), pp.627-668.

Google Scholar