Development and Research of Models and Processes of Formation in Silicon Plates p-n Junctions and Hidden Layers under the Influence of Ultrasonic Vibrations and Mechanical Stresses

Article Preview

Abstract:

In this article, mathematical models and processes of introducing homogeneous ultrasonic oscillations and mechanical stresses into silicon wafers in the direction of their thickness are developed and investigated, and mathematical models of the movement of interstitial defects in silicon wafers created by the processes of ion-beam transients at the transitions of ion-beam transitions and hidden dielectric layers using the action of ultrasound oscillations and mechanical stresses, both in the process of implantation of impurities and before the annealing of plates upon activation of the impurities are developed and investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-167

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Semenov, A., Baraban, S., Semenova, O., Voznyak, O., Vydmysh, A., & Yaroshenko, L. (2019). Statistical Express Control of the Peak Values of the Differential-Thermal Analysis of Solid Materials. Solid State Phenomena, (291), 28-41. https://doi.org/10.4028/www.scientific.net/ssp.291.28.

DOI: 10.4028/www.scientific.net/ssp.291.28

Google Scholar

[2] Krasnikov, G. Ia. (2002). Konstruktivno-technologicheskie osobennosti submikronnyh MOP-transistorov. Мoskow: Technosvera.

Google Scholar

[3] Parchynskyi, P.B., Vlasov, S.I., Lyga, L.G., et al. (2003). Vliianie iltrazvukovogo vozdeistvia na generazionnye harakteristiki granyzi razdela kremnii-dioksyd kremnia. Pisma v GTF, 29(3), 83-88.

Google Scholar

[4] Krüger, D., Romanyuk, B., Melnik, V., Olikh, Y., & Kurps, R. (2002). Influence of in situ ultrasound treatment during ion implantation on amorphization and junction formation in silicon. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20(4), 1448. https://doi.org/10.1116/1.1493784.

DOI: 10.1116/1.1493784

Google Scholar

[5] Melnik, V. P., Olikh, Y. M., Popov, V. G., Romanyuk, B. M., Goltvyanskii, Y. V., & Evtukh, A. A. (2005). Characteristics of silicon p-n junction formed by ion implantation with in situ ultrasound treatment. Materials Science and Engineering: B, 124-125, 327-330. https://doi.org/10.1016/j.mseb.2005.08.039.

DOI: 10.1016/j.mseb.2005.08.039

Google Scholar

[6] Semenov, A. O., Baraban, S. V., Osadchuk, O. V., Semenova, O. O., Koval, K. O., & Savytskyi, A. Y. (2019). Microelectronic Pyroelectric Measuring Transducers. 4th International Conference on Nanotechnologies and Biomedical Engineering, 393-397. https://doi.org/10.1007/978-3-030-31866-6_72.

DOI: 10.1007/978-3-030-31866-6_72

Google Scholar

[7] Oberemok, O.S. (2005). Doslidzenia mehanizmiv dyfuzii implantovanyh domishok v sharuvatyh structurah na osnovi cremniu v umovah nerivnovazenoi konzentrazii tochkovyh defective. Avtoreferat dysertazii, Instytut fizyky napivprovidnykiv im. B.E. Lashkarova, Kyiv.

Google Scholar

[8] Katz, G.V., et al. (1964). Magnitnye i dielectricheskie priboru. Moskow: Energia.

Google Scholar

[9] Bezuhov, N.I. (1968). Osnovy teorii uprugosti, plastichnosti s polzuchest. Moskow: Vyschaia shkola.

Google Scholar

[10] Mezon, U., et al. (1966). Fizicheskaia akustika. T. 1. Metody I pribory ultrazvukovyh issledovanii. Moskow: Mir.

Google Scholar

[11] Blistanov, A.A., Bondarenko, V.S., Shaskolskaia, M.P., et al. (1982). Akusticheskii kristaly. Spravochnik. Moskow: Nauka.

Google Scholar

[12] Osadchuk, A.V., Semenov, A.A., Baraban, S.V., Semenova, E.A., & Koval, K.O. (2013). Noncontact infrared thermometer based on a self-oscillating lambda type system for measuring the human body's temperature, Proceedings of the 23rd International Crimean Conference Microwave and Telecommunication Technology, 8-14 Sept. 2013, Sevastopol, Ukraine, 1069-1070.

Google Scholar