[1]
Semenov, A., Baraban, S., Semenova, O., Voznyak, O., Vydmysh, A., & Yaroshenko, L. (2019). Statistical Express Control of the Peak Values of the Differential-Thermal Analysis of Solid Materials. Solid State Phenomena, (291), 28-41. https://doi.org/10.4028/www.scientific.net/ssp.291.28.
DOI: 10.4028/www.scientific.net/ssp.291.28
Google Scholar
[2]
Krasnikov, G. Ia. (2002). Konstruktivno-technologicheskie osobennosti submikronnyh MOP-transistorov. Мoskow: Technosvera.
Google Scholar
[3]
Parchynskyi, P.B., Vlasov, S.I., Lyga, L.G., et al. (2003). Vliianie iltrazvukovogo vozdeistvia na generazionnye harakteristiki granyzi razdela kremnii-dioksyd kremnia. Pisma v GTF, 29(3), 83-88.
Google Scholar
[4]
Krüger, D., Romanyuk, B., Melnik, V., Olikh, Y., & Kurps, R. (2002). Influence of in situ ultrasound treatment during ion implantation on amorphization and junction formation in silicon. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20(4), 1448. https://doi.org/10.1116/1.1493784.
DOI: 10.1116/1.1493784
Google Scholar
[5]
Melnik, V. P., Olikh, Y. M., Popov, V. G., Romanyuk, B. M., Goltvyanskii, Y. V., & Evtukh, A. A. (2005). Characteristics of silicon p-n junction formed by ion implantation with in situ ultrasound treatment. Materials Science and Engineering: B, 124-125, 327-330. https://doi.org/10.1016/j.mseb.2005.08.039.
DOI: 10.1016/j.mseb.2005.08.039
Google Scholar
[6]
Semenov, A. O., Baraban, S. V., Osadchuk, O. V., Semenova, O. O., Koval, K. O., & Savytskyi, A. Y. (2019). Microelectronic Pyroelectric Measuring Transducers. 4th International Conference on Nanotechnologies and Biomedical Engineering, 393-397. https://doi.org/10.1007/978-3-030-31866-6_72.
DOI: 10.1007/978-3-030-31866-6_72
Google Scholar
[7]
Oberemok, O.S. (2005). Doslidzenia mehanizmiv dyfuzii implantovanyh domishok v sharuvatyh structurah na osnovi cremniu v umovah nerivnovazenoi konzentrazii tochkovyh defective. Avtoreferat dysertazii, Instytut fizyky napivprovidnykiv im. B.E. Lashkarova, Kyiv.
Google Scholar
[8]
Katz, G.V., et al. (1964). Magnitnye i dielectricheskie priboru. Moskow: Energia.
Google Scholar
[9]
Bezuhov, N.I. (1968). Osnovy teorii uprugosti, plastichnosti s polzuchest. Moskow: Vyschaia shkola.
Google Scholar
[10]
Mezon, U., et al. (1966). Fizicheskaia akustika. T. 1. Metody I pribory ultrazvukovyh issledovanii. Moskow: Mir.
Google Scholar
[11]
Blistanov, A.A., Bondarenko, V.S., Shaskolskaia, M.P., et al. (1982). Akusticheskii kristaly. Spravochnik. Moskow: Nauka.
Google Scholar
[12]
Osadchuk, A.V., Semenov, A.A., Baraban, S.V., Semenova, E.A., & Koval, K.O. (2013). Noncontact infrared thermometer based on a self-oscillating lambda type system for measuring the human body's temperature, Proceedings of the 23rd International Crimean Conference Microwave and Telecommunication Technology, 8-14 Sept. 2013, Sevastopol, Ukraine, 1069-1070.
Google Scholar