[1]
Lialiuk, V., Tarakanov, A., Zhuravlev, F., Kassim, D., & Chuprinov, E. (2018). The main direction of innovative improvement of blast-furnace practice - the use of one type of iron ore raw material that combines the best properties of sinter and pellets. Steel, (1), 6-11.
DOI: 10.31498/2225-6733.36.2018.142462
Google Scholar
[2]
Filonenko, O (2018). Sustainable development of Ukrainian iron and steel industry enterprises in regards to the bulk manufacturing waste recycling efficiency improvement. Mining of Mineral Deposits, 12(1), 115-122. https://doi.org/10.15407/mining12.01.115.
DOI: 10.15407/mining12.01.115
Google Scholar
[3]
Malanchuk, Z.R. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. Article in press.
DOI: 10.29202/nvngu/2019-6/2
Google Scholar
[4]
Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38.
DOI: 10.33271/mining13.01.024
Google Scholar
[5]
Lialiuk, V. et al. (2010). The experience of using high-quality agglomerated iron ore raw materials in blast furnace. Metallurgical and mining industry, (6), 6-9.
Google Scholar
[7]
Kuz'menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10.
DOI: 10.1201/b16354-9
Google Scholar
[8]
Khopunov, E. (2013). Selective destruction of mineral and anthropogenic materials. Yekaterinburg:UIPTS.
Google Scholar
[9]
Livshits, B. & Vasilyev, G. (1964). The study of the mechanical properties of the main components of iron ore sinter. Izvestiya. Ferrous Metallurgy, (6), 23-25.
Google Scholar
[10]
Cheng, Z., Yang, J., Zhou, L., Liu, Y., & Wang, Q. (2016). Sinter strength evaluation using process parameters under different conditions in iron ore sintering process. Applied Thermal Engineering, 105, 894-904. https://doi.org/10.1016/j.applthermaleng.2016.03.034.
DOI: 10.1016/j.applthermaleng.2016.03.034
Google Scholar
[11]
Sulimenko, S. (2014). Promising directions for the environmentally friendly technology of producing high-quality sinter in modern conditions. System technologies. Regional Interuniversity collection of scientific papers, 4(93), 32-38.
Google Scholar
[12]
Lu, L. (2015). Important iron ore characteristics and their impacts on sinter quality – a review. Minerals & Metallurgical process, 32(2), 88-96. https://doi.org/10.1007/bf03402425.
Google Scholar
[13]
Lu, L., & Ishiyama, O. (2015). Iron ore sintering. Iron ore, 395-433. https://doi.org/10.1016/b978-1-78242-156-6.00014-9.
DOI: 10.1016/b978-1-78242-156-6.00014-9
Google Scholar
[14]
Komatsu, O., Noda, H., Fukuyo, H., Sakamoto, N. (1992). CAMP-ISIJ, 5, 1042-1045.
Google Scholar
[15]
Oliveira, V. de M., Resende, V. G. de, Domingues, A. L. A., Bagatini, M. C., & Castro, L.F.A. de. (2019). Alternative to deal with high level of fine materials in iron ore sintering process. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2019.07.032.
DOI: 10.1016/j.jmrt.2019.07.032
Google Scholar
[16]
Han, H., & Lu, L. (2017). Recent advances in sintering with high proportions of magnetite concentrates. Mineral Processing and Extractive Metallurgy Review, 39(4), 217-230. https://doi.org/10.1080/08827508.2017.1415206.
DOI: 10.1080/08827508.2017.1415206
Google Scholar
[17]
Litster, J.D., Waters, A.G., 1990. Kinetics of iron ore sinter feed granulation. Powder Technology. 62, 125-134.
DOI: 10.1016/0032-5910(90)80075-a
Google Scholar
[18]
Romanenko, V. & Popov, G. (1980). Technology of two-stage pelletizing of sinter blend, Theoretical basis and technology of the preparation of metallurgical raw materials for blast-furnace smelting, Dnipropetrovsk, 13-15.
Google Scholar
[19]
Korshikov, G. et al. (1971). The influence of the method of fuel supply, its type and size on the performance of the sintering process. Izvestiya. Ferrous Metallurgy, 3, 37-39.
Google Scholar
[20]
Vylupko, E., Ignatov, N., Huba, O., Usenko, V., Belova, A. (2011). Iron ore sinter production with the block-cellular structure. Contemporary Problems of Metallurgy, 14, 50-57.
Google Scholar
[21]
Khudyakov, O., Boiko, M., Baiul, K., Vashchenko, S., Polyakova, N., Petrenko, V. (2018). Alternative granulation methods for fine iron ore concentrates. Ferrous metallurgy. Bulletin of scientific, technical and economical information, 1:(1), 48-53.
Google Scholar
[22]
Kieush, L., Yaholnyk, M., Boyko, M., Koveria, A., & Ihnatenko, V. (2019). Study of biomass utilization in the iron ore sintering. Acta Metallurgica Slovaca, 25(1), 55-64. https://doi.org/10.12776/ams.v25i1.1225.
DOI: 10.36547/ams.25.1.8
Google Scholar
[23]
Iljana, M. (2015). Effect of adding limestone on the metallurgical properties of iron ore pellets. International Journal of Mineral Processing, (141), 34-43. https://doi.org/10.1016/j.minpro.2015.06.004.
DOI: 10.1016/j.minpro.2015.06.004
Google Scholar