The Laser Surface Treatment Effective on Structural Properties for Invar Alloy (Fe-Ni) Type Prepared by Powder Technology

Article Preview

Abstract:

This research aimed to prepare (Fe-Ni) alloy by powder technology method for its technological and commercial importance. Iron and Nickel powders were tacking then their powders mixed and blended together with percent (63% Fe-37% Ni), then the powders compacted isostatic cold pressure at (6 ton). Laser surface treatment was done for the samples with different energies (0, 200, 260, 300) mJ and pulse time (10 sec) At a distance (100 cm). The X-ray diffractions test indicated that all samples have Face Center Cubic (F.C.C), and the samples at 300 mJ has best properties which include increase of phases intensity and decrease of grain size according to Debye-Scherrer equation. The Atomic Force Microscope (AFM) also shows better properties with increase laser energy. Where increased soft-ness of surface, homogeneity surface and decrease in grain size with increase laser energy. The laser analysis resulted that melting all surface molecules which led to improvement in the structural properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-103

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Minerals, Metals and Material Society. (1989). Warrendale.

Google Scholar

[2] Entel, P., Hofmann, E., Mohn, P., Schwarz, K., Moruzzi, V.L. (1993). Physical Reviews. Section B, (47), 8706.

Google Scholar

[3] Bahrami, A., Madaah Hosseini, H. R., Abachi, P., & Miraghaei, S. (2006). Structural and soft magnetic properties of nanocrystalline Fe85Si10Ni5 powders prepared by mechanical alloying. Materials Letters, 60(8), 1068-1070. https://doi.org/10.1016/j.matlet.2005.10.078.

DOI: 10.1016/j.matlet.2005.10.078

Google Scholar

[4] Iwase, A., Hamatani, Y., Mukumoto, Y., Ishikawa, N., Chimi, Y., Kambara, T., & Ono, F. (2003). Anomalous shift of Curie temperature in iron–nickel Invar alloys by high-energy heavy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, (209), 323-328. https://doi.org/10.1016/s0168-583x(02)02055-4.

DOI: 10.1016/s0168-583x(02)02055-4

Google Scholar

[5] Brown, P.J., Jassim, I.K., Mankikar, R.M., Nakamura, Y., & Ziebeck, K.R.A. (1988). An inelastic polarised neutron scattering investigation of the dynamic form factor in the Invar alloy Fe65Ni35. Le Journal de Physique Colloques, 49(C8), C8-307. https://doi.org/10.1051/jphyscol:19888138.

DOI: 10.1051/jphyscol:19888138

Google Scholar

[6] Ka̧dziołka-Gaweł, M., Zarek, W., & Popiel, E. (2010). The effect of temperature on the structural and magnetic behaviour of Fe-Ni Invar alloys. Journal of Physics: Conference Series, (217), 012088. https://doi.org/10.1088/1742-6596/217/1/012088.

DOI: 10.1088/1742-6596/217/1/012088

Google Scholar

[7] Chen, Y. (2011). Forensic Applications of Nanotechnology. Journal of the Chinese Chemical Society, 58(6), 828–835. https://doi.org/10.1002/jccs.201190129.

Google Scholar

[8] Kittel, C. (2005). Introduction to Solid State Physics. John Wiley and Sons, New York, (2005).

Google Scholar

[9] Pogrebnyak, A.D., Mahmud, A.M., & Karasha, E.T. (2012). Structural properties of nanocrystal line tin film. International Journal of Structronics & Mechatronics.

Google Scholar

[10] Pohrebniak, O.D., Muhammed, A.A., Karash, E.T., Jamil, N.Y., & Partyka, J. (2013). Effects of Al dopant on structural and optical properties of ZnO thin films prepared by sol-gel. Partyka, Przegląd Elektrotech, (89), 315.

Google Scholar

[11] Kim, J.G., Kim, J.G., & Ali, M.A.M. (2019). In-ground vibration propagation characteristics during underground blasting. Mining of Mineral Deposits, 13(4), 1-8.

DOI: 10.33271/mining13.04.001

Google Scholar

[12] Chattopadhyay, D., & Rakshit, D.C. (2003). Mechanics and Solid Stat‏ Physics.

Google Scholar

[13] Feitosa, A.V. (2004). A new route for preparing CdS thin films by chemical bath deposition using EDTA as ligand, Brazilian Journal of Physics, (34), 656-658.

DOI: 10.1590/s0103-97332004000400034

Google Scholar

[14] Feitosa, A.V., Miranda, M.A.R., Sasaki, J.M., & Araújo-Silva, M.A. (2004). A new route for preparing CdS thin films by chemical bath deposition using EDTA as ligand. Brazilian Journal of Physics, 34(2b), 656-658. https://doi.org/10.1590/s0103-97332004000400034.

DOI: 10.1590/s0103-97332004000400034

Google Scholar

[15] Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., & Golberg, D. (2011). ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 56(2), 175-287. https://doi.org/10.1016/j.pmatsci.2010.10.001.

DOI: 10.1016/j.pmatsci.2010.10.001

Google Scholar

[16] Suresh, S. (2013). Synthesis, structural and dielectric properties of zinc sulfide nanoparticles. International Journal of Physical Sciences, 8(21), 1121-1127.

Google Scholar

[17] Varea, A., Pellicer, E., Pané, S., Nelson, B. J., Suriñach, S., Baró, M. D., & Sort, J. (2012). Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. International Journal of Electrochemical Sciences, (7), 1288-1302.

DOI: 10.1016/j.surfcoat.2011.05.047

Google Scholar