[1]
Mykhailov, V., & Kurylo, M. (2011). Estimation of flux reserve and resource base of Ukraine. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 135-140. https://doi.org/10.5593/sgem2015/b11/s1.018.
DOI: 10.5593/sgem2015/b11/s1.018
Google Scholar
[2]
Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11.
DOI: 10.15407/mining11.02.001
Google Scholar
[3]
Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.
DOI: 10.1201/b17547-20
Google Scholar
[4]
Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.
DOI: 10.29202/nvngu/2018-2/3
Google Scholar
[5]
Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113–119.
DOI: 10.1201/b11329-19
Google Scholar
[6]
Yablokov, A., Levchenko, V., & Kerzhentsev, A. (2017). The Biosphere as a Living System. On the Harmonization of Human and Biosphere. Philosophy and Cosmology, (18), 52-83.
Google Scholar
[7]
Pivnyak, G.G., Shashenko, O.M. (2016). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.
DOI: 10.29202/nvngu
Google Scholar
[8]
Perkov, Ye., & Perkova, T. (2017). Recycling of Prydniprovska thermal power plant fly ash. Mining of Mineral Deposits, 11(1), 106-112. https://doi.org/10.15407/mining11.01.106.
DOI: 10.15407/mining11.01.106
Google Scholar
[9]
Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 129-132. https://doi.org/10.1201/noe0415436700.ch16.
DOI: 10.1201/noe0415436700.ch16
Google Scholar
[10]
Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409–1414.
DOI: 10.1080/02329290290024925
Google Scholar
[11]
Smol, M., Kulczycka, J., & Avdiushchenko, A. (2017). Circular economy indicators in relation to eco-innovation in European regions. Clean Technologies and Environmental Policy, 19(3), 669-678. https://doi.org/10.1007/s10098-016-1323-8.
DOI: 10.1007/s10098-016-1323-8
Google Scholar
[12]
Vagonova, O.G., Volosheniuk, V.V. (2012). Mining enterprises' economic strategies as derivatives of nature management in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 127-134.
DOI: 10.29202/nvngu
Google Scholar
[13]
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Ye. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif Around Faulting. International Journal of Engineering Research in Africa, (35), 77-88.
DOI: 10.4028/www.scientific.net/jera.35.77
Google Scholar
[14]
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4). https://doi.org/10.1016/j.acme.2018.01.012.
DOI: 10.1016/j.acme.2018.01.012
Google Scholar
[15]
Bondarenko, V. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015, 27–32. https://doi.org/10.1201/b19901-6.
DOI: 10.1201/b19901-6
Google Scholar
[16]
Saik, Р. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
DOI: 10.29202/nvngu
Google Scholar
[17]
Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological fault on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[18]
Bulat, A.F, Naduty, V.P, Malanchuk, E.Z., Malanchuk, Z.R., & Kornienko V.Ya. (2017). Industrial technologies for the production of amber. Monograph. Rivne: 237.
Google Scholar
[19]
Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-Mechanical and Chemical Characteristics of Amber. Solid State Phenomena, (277), 80–89.
DOI: 10.4028/www.scientific.net/ssp.277.80
Google Scholar
[20]
Malanchuk, Z., Malanchuk, Ye., & Khrystiuk, A. (2016). Mathematical modeling of hydraulic mining from placer deposits of minerals. Mining of Mineral Deposits, 10(2), 18-24.
DOI: 10.15407/mining10.02.018
Google Scholar
[21]
Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), (134), 977–982.
DOI: 10.1051/jp4:2006134149
Google Scholar
[22]
Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermo-dynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155.
DOI: 10.4028/www.scientific.net/ssp.291.155
Google Scholar
[23]
Malanchuk, Z., Korniienko, V., Malanchuk, Ye., Soroka, V., & Vasylchuk, O. (2018). Modeling the formation of high metal concentration zones in man-made deposits. Mining of Mineral Deposits, 12(2), 76-84. https://doi.org/10.15407/mining12.02.076.
DOI: 10.15407/mining12.02.076
Google Scholar
[24]
Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049.
DOI: 10.33271/mining13.01.049
Google Scholar
[25]
Moshynsky, V., & Riabova, O. (2013). Approaches to Aquatic Ecosystems Organic Energy Assessment and Modelling. NATO Science for Peace and Security Series C: Environmental Security, 125–135. https://doi.org/10.1007/978-94-007-6152-0_12.
DOI: 10.1007/978-94-007-6152-0_12
Google Scholar
[26]
Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015, 441–443. https://doi.org/10.1201/b19901-77.
DOI: 10.1201/b19901-77
Google Scholar
[27]
Malanchuk, Z., Malanchuk, Ye., & Khrystiuk, A. (2016). Mathematical modeling of hydraulic mining from placer deposits of minerals. Mining of Mineral Deposits, 10(2), 18-24. http://dx.doi.org/10.15407/mining10.02.018.
DOI: 10.15407/mining10.02.018
Google Scholar
[28]
Malanchuk, E., Malanchuk, Z., Korniienko, V., & Gromachenko, S. The results of magnetic separation use in ore processing of metalliferous raw basalt of Volyn region. Mining of Mineral Deposits, 10(3), 2016, 77-83. http://dx.doi.org/10.15407/mining10.03.077.
DOI: 10.15407/mining10.03.077
Google Scholar