Mechanochemical Activation of Polymetallic Ore and Further Selective Floatation

Article Preview

Abstract:

It has been demonstrated that shock-vibrating activation of minerals is a prospective method to impact the ore; it may be used to intensify chemical and physical-chemical processes of mineral raw material processing and preparation. Differences in the composition and phase properties, obtained both in terms of continuous and periodic modes, are in the fact that in the first case loadings deal with interlayer space preserving layered nature of the mineral. When the mode is continuous, then the disturbances cover the octahedral layer though elementary constituent – tetrahedrons – are preserved. It has emerged that the most important advantage of high reacting capability of activated minerals is in the fact that leaching of some ores may be performed in chlorhydric acid at the expense of transformation of some silicate components into a specific state – loose packing of basic silicate chain. Consequently, shock-vibrating activation has become a basis to develop a method of leaching process intensification as well as a method to control phase formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-76

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Popovchenko, S.E., Shukaylo, L.G., & Gornostaev, S.S. (2005). Vyisokouglerodistom metasomatoze v zonah glubinnyih razlomov i perspektivnost obnaruzheniya v nih rudoproyavleniy redkih i blagorodnyih metallov. Sb. nauchn. trudov NGU, (22), 21-30.

Google Scholar

[2] Svetkina, Ye.Yu (2013). Intensification of concentration process through minerals vibroactivation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 38-43.

DOI: 10.29202/nvngu

Google Scholar

[3] Gurskiy, D.S., & Esepchuk, K.E. (2005). Metallicheskie i ne metallicheskie poleznyie iskopaemyie Ukrainyi. Kiev: Tsentr Evropyi.

Google Scholar

[4] Isakov, L.V. (2005). Pro odnu iz osoblivostey ridkisnometalevih pegmatitIv vuzla Kruta Balka,. Min. resursi Ukrayini, (2), 21-22.

Google Scholar

[5] Isakov, L.V. (2013). Sistematizatsiya pegmatitiv Ukrayinskogo schita za geologo-strukturnimi osoblivostyami formuvannya pegmatitonosnih granitnih kompleksiv. Zb. nauk. prats UkrDGRI, (3), 9-25.

Google Scholar

[6] Isakov, L.V., Vasilenko, A.P., & Bobrov, O.B. (2007). Geologopromislovi tipi rodovisch korisnih kopalin Ukrayini, pov'yazanih z pegmatitami. Zb. nauk. prats UkrDGRI, (1), 24-34.

Google Scholar

[7] Samoylov, V.I. (2005). Issledovanie sovremennyih i razrabotka perspektivnyih metodov izvlecheniya litiya iz mineralnogo syirya v tehnicheskie soedineniya, Ust-Kamenogorsk: Media – Alyans.

Google Scholar

[8] Kuzmenko, O.M., & Petlovanyi, M.V. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9(2), 183-190.

DOI: 10.15407/mining09.02.183

Google Scholar

[9] Svetkina, E.Yu., & Petlevaniy, M.V. (2012). Zakonomernosti formirovaniya struktury i prochnosti tverdeyushchey zakladki pri raznoy dispersnosti vyazhushchego materiala. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (37), 80-87.

Google Scholar

[10] Opredelenie udel'noy poverhnosti poroshkov po soprotivleniyu fil'tracii razrezhennogo gaza. (1979). Metodika opredeleniya AN SSSR, Moscow.

Google Scholar

[11] Svetkina, O. (2011). Mechanism of Ores Selective Flotation Containing Au and P. Technical and Geoinformational Systems in Mining, 193-196.

DOI: 10.1201/b11586-31

Google Scholar

[12] Korsakov, V.G., & Shelomenceva, I.V., Yur'evskaya, I.M., & Petrova, L.I. (1983). Issledovanie energeticheskih harakteristik i prognozirovanie fiziko-himicheskih i tekhnicheskih svoystv materialov. Napravlenniy sintez tverdyh veshchestv, (1), 158-174.

Google Scholar

[13] Franchuk, V.P. (1995). Opredelenie temperatury v zone nagruzheniya pri vibroudarnom nagruzhenii. Teoriya i praktika processov izmel'cheniya i razdeleniya, 15-23.

Google Scholar

[14] Franchuk, V.P. (2010).Vibracionnaya tekhnika v malyh proizvodstvah. Heotekhnichna mekhanika, (85), 290-296.

Google Scholar

[15] Svetkina, O. (2013). Receipt of coagulant of water treatment from radio-active elements. Mining of Mineral Deposits, 227-230.

DOI: 10.1201/b16354-41

Google Scholar

[16] Svetkina, O., & Franchuk, V.P. (2007). Povyshenye Stepeny Yzvlechenyia Poleznykh Komponentov Pry Selektyvnoi Flotatsyy Napravlennym Vybroudarnym Vozdeistvyem Na Krystallycheskuiu Reshetku Myneralov. Zbahachennia Korysnykh Kopalyn Zb. Nauk. Pr., 31(72), 66-71.

Google Scholar

[17] Kosova, N.V., Devyatkina, E.T., & Kaichev V.V. (2007). Struktura, sostoyanie ionov i elektrohimicheskie svoystva materialov LiNi1-x-yCoxMnyO2 (x=y=0,1;0,2;0,33), poluchennyih s primeneniem mehanicheskoy aktivatsii. Neorganicheskie materialyi, 43(2), 227-235.

Google Scholar

[18] Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049.

DOI: 10.33271/mining13.01.049

Google Scholar

[19] Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[20] Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339.

DOI: 10.1023/a:1023852505414

Google Scholar