[1]
Haiko, H., Saik, P., & Lozynskyi, V. (2018). The Philosophy of Mining: Historical Aspect and Future Prospect. Philosophy & Cosmology, 22, 76-90. https://doi.org/10.29202/phil-cosm/22/6.
DOI: 10.29202/phil-cosm/22/6
Google Scholar
[2]
Krause, E., Krzemień, A., & Smoliński, A. (2015). Analysis and assessment of a critical event during an underground coal gasification experiment. Journal of Loss Prevention in the Process Industries, 33, 173-182. https://doi.org/10.1016/j.jlp.2014.12.014.
DOI: 10.1016/j.jlp.2014.12.014
Google Scholar
[3]
Khadse, A., Qayyumi, M., Mahajani, S., & Aghalayam, P. (2007). Underground coal gasification: A new clean coal utilization technique for India. Energy, 32(11), 2061-2071. https://doi.org/10.1016/j.energy.2007.04.012.
DOI: 10.1016/j.energy.2007.04.012
Google Scholar
[4]
Cempa, M., & Smoliński, A. (2017). Reactivity of chars gasified in a fixed bed reactor with the potential utilization of excess process heat. Journal of Sustainable Mining, 16(4), 156-161. https://doi.org/10.1016/j.jsm.2017.12.001.
DOI: 10.1016/j.jsm.2017.12.001
Google Scholar
[5]
Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40-50. https://doi.org/10.1016/j.fuel.2011.08.024.
DOI: 10.1016/j.fuel.2011.08.024
Google Scholar
[6]
Verma, A., & Kumar, A. (2015). Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, 147, 556-568. https://doi.org/10.1016/j.apenergy.2015.03.009.
DOI: 10.1016/j.apenergy.2015.03.009
Google Scholar
[7]
Smoliński, A. (2009). Coal-Based Hydrogen Production with CO2 Capture in the Aspect of Clean Coal Technologies. Green Energy and Technology, 295-305. https://doi.org/10.1007/978-1-4419-1017-2_17.
DOI: 10.1007/978-1-4419-1017-2_17
Google Scholar
[8]
Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., & Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173, 239-246. https://doi.org/10.1016/j.fuel.2016.01.019.
DOI: 10.1016/j.fuel.2016.01.019
Google Scholar
[9]
Śliwińska, A., Burchart-Korol, D., & Smoliński, A. (2017). Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Science of The Total Environment, 574, 1571-1579.
DOI: 10.1016/j.scitotenv.2016.08.188
Google Scholar
[10]
Pivnyak, G., Razumny, Y., Zaika, V. (2009). The problems of power supply and power saving in the mining industry of Ukraine. Archives of Mining Sciences, 54(1), 5-12.
Google Scholar
[11]
Bukowska, M., & Sygała, A. (2015). Deformation properties of sedimentary rocks in the process of underground coal gasification. Journal of Sustainable Mining, 14(3), 144-156.
DOI: 10.1016/j.jsm.2015.11.003
Google Scholar
[12]
Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24. http://dx.doi.org/10.15407/mining10.01.016.
DOI: 10.15407/mining10.01.016
Google Scholar
[13]
Goncharenko, L., Ryzhakova, A., Sedova, N., Efimov, I., & Akulinin, F. (2019). Survey of the world practice of implementing energy-efficient technologies in terms of mining enterprises. Mining of Mineral Deposits, 13(4), 63-71. https://doi.org/10.33271/mining13.04.063.
DOI: 10.33271/mining13.04.063
Google Scholar
[14]
Falshtynskyi, V., Dychkovskyi, V. Lozynskyi, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 201-208. https://doi.org/10.1201/b13157-35.
DOI: 10.1201/b13157-36
Google Scholar
[15]
Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 125-132. https://doi.org/10.1201/b16354-23.
DOI: 10.1201/b16354-22
Google Scholar
[16]
Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.
DOI: 10.1201/b17547-20
Google Scholar
[17]
Caceres, E., & Alca, J.J. (2016). Potential for Energy Recovery from a Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), 3316-3321. https://doi.org/10.1109/ tla.2016.7587636.
DOI: 10.1109/tla.2016.7587636
Google Scholar
[18]
Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[19]
Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[20]
Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[21]
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. https://doi.org/10.1016/j.acme.2018.01.012.
DOI: 10.1016/j.acme.2018.01.012
Google Scholar
[22]
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Ye. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif Around Faulting. International Journal of Engineering Research in Africa, (35), 77-88. https://doi.org/10.4028/www.scientific.net/ JERA.35.77.
DOI: 10.4028/www.scientific.net/jera.35.77
Google Scholar
[23]
Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.
DOI: 10.29202/nvngu/2018-2/3
Google Scholar
[24]
Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221.
DOI: 10.4028/www.scientific.net/ssp.277.221
Google Scholar
[25]
Bondarenko, V. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.
DOI: 10.1201/b19901-6
Google Scholar
[26]
Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
DOI: 10.29202/nvngu/2019-5/4
Google Scholar
[27]
Gorova, A., Pavlychenko, A., Borysovs'ka, O., & Krups'ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Colletion - Mining of Mineral Deposit, 207-209. https://doi.org/10.1201/b16354-38.
DOI: 10.1201/b16354-37
Google Scholar
[28]
Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.
DOI: 10.3997/2214-4609.201408382
Google Scholar
[29]
Sekerin, V., Dudin, M., Gorokhova, A., Bank, S., & Bank, O. (2019). Mineral resources and national economic security: current features. Mining of Mineral Deposits, 13(1), 72-79. https://doi.org/10.33271/mining13.01.072.
DOI: 10.33271/mining13.01.072
Google Scholar
[30]
Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049.
DOI: 10.33271/mining13.01.049
Google Scholar
[31]
Rysbekov, K., Huayang, D., Kalybekov, T., Sandybekov, M., Idrissov, K., Zhakypbek, Y., & Bakhmagambetova, G. (2019). Application features of the surface laser scanning technology when solving the main tasks of surveying support for reclamation. Mining of Mineral Deposits, 13(3), 40-48. https://doi.org/10.33271/mining13.03.040.
DOI: 10.33271/mining13.03.040
Google Scholar
[32]
Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015, 441-443. https://doi.org/10.1201/b19901-77.
DOI: 10.1201/b19901-77
Google Scholar
[33]
Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/ SSP.291.155.
DOI: 10.4028/www.scientific.net/ssp.291.155
Google Scholar
[34]
Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2), 59-67. https://doi.org/10.15407/mining11.02.059.
DOI: 10.15407/mining11.02.059
Google Scholar
[35]
Pivnyak, G.G., Shashenko, O.M. (2016). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.
Google Scholar
[36]
Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1-16. https://doi.org/10.4028/ www.scientific.net/ssp.277.1.
DOI: 10.4028/www.scientific.net/ssp.277.1
Google Scholar
[37]
Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. https://doi.org/10.1201/b16355-2.
DOI: 10.1201/b16355-2
Google Scholar
[38]
Vagonova, O.G., Volosheniuk, V.V. (2012). Mining enterprises' economic strategies as derivatives of nature management in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 127-134.
Google Scholar
[39]
Kolokolov, O.V. (2000). Theory and practice of thermochemical technology of mining and processing of coal: monograph. D.: NGU Ukrainy, 281.
Google Scholar
[40]
Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Ya., Malanchuk, Ye.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6). Article in press.
DOI: 10.29202/nvngu/2019-6/2
Google Scholar
[41]
Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-Mechanical and Chemical Characteristics of Amber. Solid State Phenomena, (277), 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80.
DOI: 10.4028/www.scientific.net/ssp.277.80
Google Scholar
[42]
Kalybekov, T., Sandibekov, M., Rysbekov, K., & Zhakypbek, Y. (2019). Substantiation of ways to reclaim the space of the previously mined-out quarries for the recreational purposes. E3S Web of Conferences, (123), 01004. https://doi.org/10.1051/e3sconf/201912301004.
DOI: 10.1051/e3sconf/201912301004
Google Scholar
[43]
Chui, Y.V., Moshynskyi, V.S., Martyniuk, P.M., & Stepanchenko, O.M. (2018). On conjugation conditions in the filtration problems upon existence of semipermeable inclusions. JP Journal of Heat and Mass Transfer, 15(3), 609-619. https://doi.org/10.17654/hm015030609.
DOI: 10.17654/hm015030609
Google Scholar
[44]
Bomba, A., Tkachuk, M., Havryliuk, V., Kyrysha, R., Gerasimov, I., & Pinchuk, O. (2018). Mathematical modelling of filtration processes in drainage systems using conformal mapping. Journal of Water and Land Development, 39(1), 11-15. https://doi.org/10.2478/jwld-2018-0054.
DOI: 10.2478/jwld-2018-0054
Google Scholar
[45]
Rudakov, D.V., Ivanova, Ye.S. (2012). Estimation of fractured rock permeability around excavations from the viewpoint of rock mechanics. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 49-53.
DOI: 10.29202/nvngu
Google Scholar
[46]
Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.
DOI: 10.4028/www.scientific.net/ssp.277.66
Google Scholar
[47]
Svetkina, O., Tarasova, H., & Netiaga, O. (2016). Multi-purpose sorbent production by coal ash recycling. Mining of Mineral Deposits, 10(1), 77-82. http://dx.doi.org/10.15407/mining10.01.077.
DOI: 10.15407/mining10.01.077
Google Scholar
[48]
Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.
DOI: 10.1201/b11329-19
Google Scholar
[49]
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. http://doi.org/10.29227/IM-2018-02-36.
DOI: 10.4028/www.scientific.net/ssp.277.66
Google Scholar
[50]
Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, 60, 00005. https://doi.org/10.1051/e3sconf/20186000005.
DOI: 10.1051/e3sconf/20186000005
Google Scholar
[51]
Kovalev, A.M., Martynyuk, A.A., Boichuk, O.A., Mazko, A.G., Petryshyn, R.I., Slyusarchuk, V.Y., & Slyn'ko, V.I. (2009). Novel qualitative methods of nonlinear mechanics and their application to the analysis of multifrequency oscillations, stability, and control problems. Nonlinear Dynamics and Systems Theory, 9(2), 117-145.
Google Scholar
[52]
Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.
Google Scholar
[53]
Tyrlych, V., & Moisyshyn, V. (2019). Predicting remaining lifetime of drill pipes basing upon the fatigue crack kinetics within a pre-critical period. Mining of Mineral Deposits, 13(3), 127-133. https://doi.org/10.33271/mining13.03.127.
DOI: 10.33271/mining13.03.127
Google Scholar
[54]
Trach, V.M. (2007). Stability of conical shells made of composites with one plane of elastic symmetry. International Applied Mechanics, 43(6), 662-669. https://doi.org/10.1007/s10778-007-0065-z.
DOI: 10.1007/s10778-007-0065-z
Google Scholar