Conditions of Suitability of Coal Seams for Underground Coal Gasification

Article Preview

Abstract:

Results of evaluating the suitability of certain sections of Western Donbas coal seams, based predominately on properties of coal material, for their further experimental development by means of underground gasification method are represented. Criteria to evaluate both expediency of underground gasification and specific conditions of that process are substantiated basing upon the methodology developed at the National Mining University (Dnipro, Ukraine) together with representatives from National University of Saint Augustine (Arequipa, Peru). The methodology has been industrially approved with the confirmation of its efficiency while developing technical documentation for underground gasification projects: “Project of experimental section of Pidzemgaz station of Pavlogradvuhillia association”, “Feasibility study of the expediency of the construction of Pidzemgaz station” FS 3858-PZ”, Synelnykovo deposit; “Project on experimental underground gas generator”, Monastyryshche deposit, FS of experimental module of UCG station of Solenovske coal-mining area, Donbas. Also, they contain the researches, which were conducted within the project GP – 489, financed by Ministry of Education and Science of Ukraine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-48

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Haiko, H., Saik, P., & Lozynskyi, V. (2018). The Philosophy of Mining: Historical Aspect and Future Prospect. Philosophy & Cosmology, 22, 76-90. https://doi.org/10.29202/phil-cosm/22/6.

DOI: 10.29202/phil-cosm/22/6

Google Scholar

[2] Krause, E., Krzemień, A., & Smoliński, A. (2015). Analysis and assessment of a critical event during an underground coal gasification experiment. Journal of Loss Prevention in the Process Industries, 33, 173-182. https://doi.org/10.1016/j.jlp.2014.12.014.

DOI: 10.1016/j.jlp.2014.12.014

Google Scholar

[3] Khadse, A., Qayyumi, M., Mahajani, S., & Aghalayam, P. (2007). Underground coal gasification: A new clean coal utilization technique for India. Energy, 32(11), 2061-2071. https://doi.org/10.1016/j.energy.2007.04.012.

DOI: 10.1016/j.energy.2007.04.012

Google Scholar

[4] Cempa, M., & Smoliński, A. (2017). Reactivity of chars gasified in a fixed bed reactor with the potential utilization of excess process heat. Journal of Sustainable Mining, 16(4), 156-161. https://doi.org/10.1016/j.jsm.2017.12.001.

DOI: 10.1016/j.jsm.2017.12.001

Google Scholar

[5] Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40-50. https://doi.org/10.1016/j.fuel.2011.08.024.

DOI: 10.1016/j.fuel.2011.08.024

Google Scholar

[6] Verma, A., & Kumar, A. (2015). Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, 147, 556-568. https://doi.org/10.1016/j.apenergy.2015.03.009.

DOI: 10.1016/j.apenergy.2015.03.009

Google Scholar

[7] Smoliński, A. (2009). Coal-Based Hydrogen Production with CO2 Capture in the Aspect of Clean Coal Technologies. Green Energy and Technology, 295-305. https://doi.org/10.1007/978-1-4419-1017-2_17.

DOI: 10.1007/978-1-4419-1017-2_17

Google Scholar

[8] Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., & Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173, 239-246. https://doi.org/10.1016/j.fuel.2016.01.019.

DOI: 10.1016/j.fuel.2016.01.019

Google Scholar

[9] Śliwińska, A., Burchart-Korol, D., & Smoliński, A. (2017). Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Science of The Total Environment, 574, 1571-1579.

DOI: 10.1016/j.scitotenv.2016.08.188

Google Scholar

[10] Pivnyak, G., Razumny, Y., Zaika, V. (2009). The problems of power supply and power saving in the mining industry of Ukraine. Archives of Mining Sciences, 54(1), 5-12.

Google Scholar

[11] Bukowska, M., & Sygała, A. (2015). Deformation properties of sedimentary rocks in the process of underground coal gasification. Journal of Sustainable Mining, 14(3), 144-156.

DOI: 10.1016/j.jsm.2015.11.003

Google Scholar

[12] Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24. http://dx.doi.org/10.15407/mining10.01.016.

DOI: 10.15407/mining10.01.016

Google Scholar

[13] Goncharenko, L., Ryzhakova, A., Sedova, N., Efimov, I., & Akulinin, F. (2019). Survey of the world practice of implementing energy-efficient technologies in terms of mining enterprises. Mining of Mineral Deposits, 13(4), 63-71. https://doi.org/10.33271/mining13.04.063.

DOI: 10.33271/mining13.04.063

Google Scholar

[14] Falshtynskyi, V., Dychkovskyi, V. Lozynskyi, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 201-208. https://doi.org/10.1201/b13157-35.

DOI: 10.1201/b13157-36

Google Scholar

[15] Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 125-132. https://doi.org/10.1201/b16354-23.

DOI: 10.1201/b16354-22

Google Scholar

[16] Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20.

DOI: 10.1201/b17547-20

Google Scholar

[17] Caceres, E., & Alca, J.J. (2016). Potential for Energy Recovery from a Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), 3316-3321. https://doi.org/10.1109/ tla.2016.7587636.

DOI: 10.1109/tla.2016.7587636

Google Scholar

[18] Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[19] Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[20] Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-29.

DOI: 10.29202/nvngu/2018-3/5

Google Scholar

[21] Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. https://doi.org/10.1016/j.acme.2018.01.012.

DOI: 10.1016/j.acme.2018.01.012

Google Scholar

[22] Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Ye. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif Around Faulting. International Journal of Engineering Research in Africa, (35), 77-88. https://doi.org/10.4028/www.scientific.net/ JERA.35.77.

DOI: 10.4028/www.scientific.net/jera.35.77

Google Scholar

[23] Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34-43.

DOI: 10.29202/nvngu/2018-2/3

Google Scholar

[24] Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221.

DOI: 10.4028/www.scientific.net/ssp.277.221

Google Scholar

[25] Bondarenko, V. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[26] Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.

DOI: 10.29202/nvngu/2019-5/4

Google Scholar

[27] Gorova, A., Pavlychenko, A., Borysovs'ka, O., & Krups'ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Colletion - Mining of Mineral Deposit, 207-209. https://doi.org/10.1201/b16354-38.

DOI: 10.1201/b16354-37

Google Scholar

[28] Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.

DOI: 10.3997/2214-4609.201408382

Google Scholar

[29] Sekerin, V., Dudin, M., Gorokhova, A., Bank, S., & Bank, O. (2019). Mineral resources and national economic security: current features. Mining of Mineral Deposits, 13(1), 72-79. https://doi.org/10.33271/mining13.01.072.

DOI: 10.33271/mining13.01.072

Google Scholar

[30] Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049.

DOI: 10.33271/mining13.01.049

Google Scholar

[31] Rysbekov, K., Huayang, D., Kalybekov, T., Sandybekov, M., Idrissov, K., Zhakypbek, Y., & Bakhmagambetova, G. (2019). Application features of the surface laser scanning technology when solving the main tasks of surveying support for reclamation. Mining of Mineral Deposits, 13(3), 40-48. https://doi.org/10.33271/mining13.03.040.

DOI: 10.33271/mining13.03.040

Google Scholar

[32] Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015, 441-443. https://doi.org/10.1201/b19901-77.

DOI: 10.1201/b19901-77

Google Scholar

[33] Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/ SSP.291.155.

DOI: 10.4028/www.scientific.net/ssp.291.155

Google Scholar

[34] Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2), 59-67. https://doi.org/10.15407/mining11.02.059.

DOI: 10.15407/mining11.02.059

Google Scholar

[35] Pivnyak, G.G., Shashenko, O.M. (2016). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.

Google Scholar

[36] Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., & Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1-16. https://doi.org/10.4028/ www.scientific.net/ssp.277.1.

DOI: 10.4028/www.scientific.net/ssp.277.1

Google Scholar

[37] Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. https://doi.org/10.1201/b16355-2.

DOI: 10.1201/b16355-2

Google Scholar

[38] Vagonova, O.G., Volosheniuk, V.V. (2012). Mining enterprises' economic strategies as derivatives of nature management in the system of social relations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 127-134.

Google Scholar

[39] Kolokolov, O.V. (2000). Theory and practice of thermochemical technology of mining and processing of coal: monograph. D.: NGU Ukrainy, 281.

Google Scholar

[40] Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Ya., Malanchuk, Ye.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6). Article in press.

DOI: 10.29202/nvngu/2019-6/2

Google Scholar

[41] Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-Mechanical and Chemical Characteristics of Amber. Solid State Phenomena, (277), 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80.

DOI: 10.4028/www.scientific.net/ssp.277.80

Google Scholar

[42] Kalybekov, T., Sandibekov, M., Rysbekov, K., & Zhakypbek, Y. (2019). Substantiation of ways to reclaim the space of the previously mined-out quarries for the recreational purposes. E3S Web of Conferences, (123), 01004. https://doi.org/10.1051/e3sconf/201912301004.

DOI: 10.1051/e3sconf/201912301004

Google Scholar

[43] Chui, Y.V., Moshynskyi, V.S., Martyniuk, P.M., & Stepanchenko, O.M. (2018). On conjugation conditions in the filtration problems upon existence of semipermeable inclusions. JP Journal of Heat and Mass Transfer, 15(3), 609-619. https://doi.org/10.17654/hm015030609.

DOI: 10.17654/hm015030609

Google Scholar

[44] Bomba, A., Tkachuk, M., Havryliuk, V., Kyrysha, R., Gerasimov, I., & Pinchuk, O. (2018). Mathematical modelling of filtration processes in drainage systems using conformal mapping. Journal of Water and Land Development, 39(1), 11-15. https://doi.org/10.2478/jwld-2018-0054.

DOI: 10.2478/jwld-2018-0054

Google Scholar

[45] Rudakov, D.V., Ivanova, Ye.S. (2012). Estimation of fractured rock permeability around excavations from the viewpoint of rock mechanics. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 49-53.

DOI: 10.29202/nvngu

Google Scholar

[46] Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[47] Svetkina, O., Tarasova, H., & Netiaga, O. (2016). Multi-purpose sorbent production by coal ash recycling. Mining of Mineral Deposits, 10(1), 77-82. http://dx.doi.org/10.15407/mining10.01.077.

DOI: 10.15407/mining10.01.077

Google Scholar

[48] Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.

DOI: 10.1201/b11329-19

Google Scholar

[49] Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. http://doi.org/10.29227/IM-2018-02-36.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[50] Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, 60, 00005. https://doi.org/10.1051/e3sconf/20186000005.

DOI: 10.1051/e3sconf/20186000005

Google Scholar

[51] Kovalev, A.M., Martynyuk, A.A., Boichuk, O.A., Mazko, A.G., Petryshyn, R.I., Slyusarchuk, V.Y., & Slyn'ko, V.I. (2009). Novel qualitative methods of nonlinear mechanics and their application to the analysis of multifrequency oscillations, stability, and control problems. Nonlinear Dynamics and Systems Theory, 9(2), 117-145.

Google Scholar

[52] Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.

Google Scholar

[53] Tyrlych, V., & Moisyshyn, V. (2019). Predicting remaining lifetime of drill pipes basing upon the fatigue crack kinetics within a pre-critical period. Mining of Mineral Deposits, 13(3), 127-133. https://doi.org/10.33271/mining13.03.127.

DOI: 10.33271/mining13.03.127

Google Scholar

[54] Trach, V.M. (2007). Stability of conical shells made of composites with one plane of elastic symmetry. International Applied Mechanics, 43(6), 662-669. https://doi.org/10.1007/s10778-007-0065-z.

DOI: 10.1007/s10778-007-0065-z

Google Scholar