[1]
Setyarini, P. H., Gapsari, F., & Purnomo. (2018). Growth of anodic Aluminum Oxide using titanium as cathode – a review. MATEC Web of Conferences, 204, 05019. https://doi.org/10.1051/matecconf/201820405019.
DOI: 10.1051/matecconf/201820405019
Google Scholar
[2]
Setyarini, P.H., Soenoko, R., Suprapto, A., & Irawan, Y.S. (2016). Properties of Electrochemical Impedance and Surface Characteristics of Anodized AA 6061. International Review of Mechanical Engineering (IREME), 10(3), 186. https://doi.org/10.15866/ireme.v10i3.8751.
DOI: 10.15866/ireme.v10i3.8751
Google Scholar
[3]
Simchi, A., Pishbin, F., & Boccaccini, A. R. (2009). Electrophoretic deposition of chitosan. Materials Letters, 63(26), 2253-2256. https://doi.org/10.1016/j.matlet.2009.07.046.
DOI: 10.1016/j.matlet.2009.07.046
Google Scholar
[4]
Ahmed, R.A., Farghali, R.A., & Fekry, A.M. (2012). Study for the stability and corrosion inhibition of electrophoretic deposited chitosan on mild steel alloy in acidic medium. International Journal of Electrochemical Science, 7, 7270-7282.
Google Scholar
[5]
Foged, J.N., Folkmar, A.J., Elisabeth, J., Løvstad, P., Melsing, E., Napper, D., Riis, A., Jørgensen, C., Christiansen, P., Ranløv, P., & Boye-Møller, A.R. (2005). Stainless Steel in The Food Industry – an Introduction. Denmark: Danish Technological Institute.
Google Scholar
[6]
Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science, 52(1), 1-61.
DOI: 10.1016/j.pmatsci.2006.07.001
Google Scholar
[7]
Gapsari, F., Wijaya, A.H. (2018). Corrosion Behavior of Brass Acid. Metalurgija, 57, (2018) 333-336.
Google Scholar
[8]
Gapsari, F., Wahyudi, S., & Sumawan. (2014). The Influence of High Content of Silicon in Austenitic Stainless Steel to Corrosion Rate in Sulphuric Acid. Applied Mechanics and Materials, 493, 727-732. https://doi.org/10.4028/www.scientific.net/amm.493.727.
DOI: 10.4028/www.scientific.net/amm.493.727
Google Scholar
[9]
Setyarini, P.H., Soenoko, R., Irawan, Y.S. (2018). Purnomo, Corrosion Characterization of Anodized AA6061, MM Sci Journal, 2415-2420.
DOI: 10.17973/mmsj.2018_06_201803
Google Scholar
[10]
Ganda, A.N.F., Andoko, Setyarini, P.H., & Gapsari, F. (2018). The inhibitive effect of tannin in Psidium guajava leaves towards 304SS corrosion in concentrated HCl. MATEC Web of Conferences, 204, 05018. https://doi.org/10.1051/matecconf/201820405018.
DOI: 10.1051/matecconf/201820405018
Google Scholar
[11]
Gapsari, F., Soenoko, R., Suprapto, A. & Suprapto, W. (2016). Green Inhibitor For Api 5L X65 Steel In HCl 0.5 M", ARPN Journal of Engineering and Applied Sciences, 11.
Google Scholar
[12]
Gapsari, F., Soenoko, R., Suprapto, A., Suprapto, W. (2018). Minimization of corrosion rate using response surface methodology. Engineering Review, 38, (2018) 115-119.
Google Scholar
[13]
Suprapto, W., & Gapsari, F. (2018). Comparation of the analytical and experimental models of 304SS corrosion rate in 0.5 m H2SS4 with bee wax propolis extract. Engineering Review, 38(2), 182-188.
DOI: 10.30765/er.38.2.6
Google Scholar
[14]
Gapsari, F., Soenoko, R., Suprapto, A., & Suprapto, W. (2016). Effect of Organics Corrosion Inhibitors on the Corrosion of 304SS in 3.5% NaCl. International Review of Mechanical Engineering (IREME), 10(7), 531. https://doi.org/10.15866/ireme.v10i7.9732.
DOI: 10.15866/ireme.v10i7.9732
Google Scholar
[15]
Gapsari, F., Soenoko, R., Suprapto, A., & Suprapto, W. (2015). Bee Wax Propolis Extract as Eco-Friendly Corrosion Inhibitors for 304SS in Sulfuric Acid. International Journal of Corrosion, 2015, 1-10. https://doi.org/10.1155/2015/567202.
DOI: 10.1155/2015/567202
Google Scholar
[16]
Sharmin, E., Ahmad, S., & Zafar, F. (2012). Renewable Resources in Corrosion Resistance,Corrosion Resistance. Dr Shih. Croatia: In Tech.
DOI: 10.5772/31995
Google Scholar