[1]
Girin, O.B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 1. Surface Engineering and Applied Electrochemistry, 53(2), 137-143. https://doi.org/10.3103/s1068375517020041.
DOI: 10.3103/s1068375517020041
Google Scholar
[2]
Girin, O.B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 2. Surface Engineering and Applied Electrochemistry, 53(3), 233-239. https://doi.org/10.3103/s1068375517030048.
DOI: 10.3103/s1068375517030048
Google Scholar
[3]
Girin, O.B. (2017). Further evidence of phase formation through a liquid state stage in electrodeposited metals: Part 3. Surface Engineering and Applied Electrochemistry, 53(4), 339-344. https://doi.org/10.3103/s1068375517040056.
DOI: 10.3103/s1068375517040056
Google Scholar
[4]
Milchev, A. (2002). Electrocrystallization. Fundamentals of Nucleation and Growth. New York: Kluwer.
Google Scholar
[5]
Paunovic, M., & Schlesinger, M. (2006). Fundamentals of Electrochemical Deposition. Hoboken: Wiley.
Google Scholar
[6]
Budevski, E., Staikov, G., & Lorenz, W.J. (2008). Electrochemical Phase Formation and Growth.Weinheim: Wiley.
Google Scholar
[7]
Plieth, W. (2008). Electrochemistry for Materials Science. Amsterdam: Elsevier.
Google Scholar
[8]
Gamburg, Yu.D., & Zangari, G. (2011). Theory and Practice of Metal Electrodeposition. New York: Springer-Verlag.
Google Scholar
[9]
Torrent-Burgués, J. (2012). Electrochemical nucleation: comparison test of classical and atomistic nucleation models. Journal of Solid State Electrochemistry, 17(2), 373-378. https://doi.org/10.1007/s10008-012-1872-7.
DOI: 10.1007/s10008-012-1872-7
Google Scholar
[10]
Isaev, V.A., & Grishenkova, O.V. (2014). Galvanostatic phase formation. Journal of Solid State Electrochemistry, 18(9), 2383-2386. https://doi.org/10.1007/s10008-014-2489-9.
DOI: 10.1007/s10008-014-2489-9
Google Scholar
[11]
Milchev, A. (2016). Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts, 2(1). https://doi.org/10.1007/s40828-015-0021-1.
DOI: 10.1007/s40828-015-0021-1
Google Scholar
[12]
Staikov, G. (2016). Nanoscale electrodeposition of low-dimensional metal phases and clusters. Nanoscale, 8(29), 13880-13892. https://doi.org/10.1039/c6nr01547f.
DOI: 10.1039/c6nr01547f
Google Scholar
[13]
Romero-Romo, M., Aldana-González, J., Botello, L. E., Montes de Oca, M. G., Ramírez-Silva, M. T., Corona-Avendaño, S., & Palomar-Pardavé, M. (2017). Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode. Journal of Electroanalytical Chemistry, (791), 1-7. https://doi.org/10.1016/j.jelechem.2017.03.003.
DOI: 10.1016/j.jelechem.2017.03.003
Google Scholar
[14]
Mladenova, E., & Milchev, A. (2017). Electrochemical nucleation and growth of three-dimensional clusters: the case of multi-step ions discharge–I. Journal of Solid State Electrochemistry, 21(6), 1599-1604. https://doi.org/10.1007/s10008-017-3511-9.
DOI: 10.1007/s10008-017-3511-9
Google Scholar
[15]
Brankovic, S. R. (2018). Fundamentals of Metal Deposition via Surface Limited Redox Replacement of Underpotentially-Deposited Monolayer. The Electrochemical Society Interface, 27(2), 57-63. https://doi.org/10.1149/2.f05182if.
DOI: 10.1149/2.f05182if
Google Scholar
[16]
Zhou, X., Wang, Y., Liang, Z., & Jin, H. (2018). Electrochemical Deposition and Nucleation/Growth Mechanism of Ni–Co–Y2O3 Multiple Coatings. Materials, 11(7), 1124. https://doi.org/10.3390/ma11071124.
DOI: 10.3390/ma11071124
Google Scholar
[17]
Bauccio, M. (Ed.) (1977). ASM Metals Reference Book, ASM International, Materials Park.
Google Scholar
[18]
Girin, O.B., Khlyntsev, V.P. (2000). Mechanism of liquid phase formation in metals during electrodeposition. Elektronnaya Obrabotka Materialov, (3), 13-18.
Google Scholar
[19]
Ditkin, V.A., & Prudnikov, A.P. (1965). Integral Transforms and Operational Calculus. Oxford: Pergamon Press.
Google Scholar
[20]
Schiff, J.L. (1999). The Laplace Transform: Theory and Applications. New York: Springer.
Google Scholar