Adsorption Properties of Magnetic Sorbent Mn0.25Fe2.75O4@SiO2 for Mercury Removal

Article Preview

Abstract:

Mercury pollution through water causes several dangerous diseases. Various efforts have been made to reduce mercury pollution. One of them is by using sorbent. Many ways to improve absorption efficiency, one of which is using magnetic sorbents. This study focused on the effect of grain size and the concentration of Mn0.25Fe2.75O4@SiO2 core-shell on mercury absorption efficiency. The synthesis of Mn0.25Fe2.75O4@SiO2 with 6 and 8 mL of TEOS was carried out through coprecipitation and sol-gel methods. The characterization using XRD, VSM, and FTIR was conducted to determine grain size, properties, and material functional groups proving that SiO2 was successfully covered on the Fe3O4 surface. The percentage of absorption was found by using the AAS instrument. Diffraction data confirmed the presence of Fe3O4 and the amorphous SiO2 phase. According to the Rietveld analysis of all samples demonstrated the particle size of Mn0.25Fe2.75O4 around 11-12 nm. The Mn0.25Fe2.75O4 core had superparamagnetic properties for magnetic separation, and the SiO2 shell could protect the core of being oxidized or dissolved under acid condition. FTIR results showed the sample had a functional group of the main components of Fe-O and SiO2 at a wavenumber of 420-507 cm-1 and 801 cm-1 (stretching) and 1078 cm-1 (bending), respectively. The results of the mercury absorption test indicated that the smaller the grain size and the higher the concentration of TEOS, the percentage of mercury uptake would increase. In addition, the absorption percentage increased with the duration of absorption time given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-204

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Duan, X. Wang, D. Wang, Y. Duan, N. Cheng, G. Xiu, Atmospheric mercury speciation in Shanghai, China, Science of The Total Environment. 578 (2017) 460–468.

DOI: 10.1016/j.scitotenv.2016.10.209

Google Scholar

[2] D.L. Gallup, D.J. O'Rear, R. Radford, The behavior of mercury in water, alcohols, monoethylene glycol, and triethylene glycol, Fuel. 196 (2017) 178–184.

DOI: 10.1016/j.fuel.2017.01.100

Google Scholar

[3] J. Wang, X. Feng, C.W.N. Anderson, Y. Xing, L. Shang, Remediation of mercury contaminated sites – A review, Journal of Hazardous Materials. 221–222 (2012) 1–18.

DOI: 10.1016/j.jhazmat.2012.04.035

Google Scholar

[4] A. Moreno-Ortega, R. Moreno-Rojas, J.R. Martínez-Álvarez, M. González Estecha, N.P. Castro González, M.Á. Amaro López, Probabilistic risk analysis of mercury intake via food consumption in Spain, Journal of Trace Elements in Medicine and Biology. 43 (2017) 135–141.

DOI: 10.1016/j.jtemb.2016.12.014

Google Scholar

[5] M. Vigeh, E. Nishioka, K. Ohtani, Y. Omori, T. Matsukawa, S. Koda, K. Yokoyama, Prenatal mercury exposure and birth weight, Reproductive Toxicology. 76 (2018) 78–83.

DOI: 10.1016/j.reprotox.2018.01.002

Google Scholar

[6] M. Akerstrom, L. Barregard, T. Lundh, G. Sallsten, Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring, Toxicology and Applied Pharmacology. 320 (2017) 17–25.

DOI: 10.1016/j.taap.2017.02.007

Google Scholar

[7] A.L.V. Milioni, B.V. Nagy, A.L.A. Moura, E.C. Zachi, M.T.S. Barboni, D.F. Ventura, Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry, NeuroToxicology. 59 (2017) 263–269.

DOI: 10.1016/j.neuro.2016.04.010

Google Scholar

[8] P.D. Pigatto, A. Costa, G. Guzzi, Are mercury and Alzheimer's disease linked?, Science of The Total Environment. 613–614 (2018) 1579–1580.

DOI: 10.1016/j.scitotenv.2017.09.036

Google Scholar

[9] C. Lewis, Parkinson's true passion, New Scientist. 234 (2017) 42–43.

Google Scholar

[10] M. Urgun-Demirtas, P.L. Benda, P.S. Gillenwater, M.C. Negri, H. Xiong, S.W. Snyder, Achieving very low mercury levels in refinery wastewater by membrane filtration, Journal of Hazardous Materials. 215–216 (2012) 98–107.

DOI: 10.1016/j.jhazmat.2012.02.040

Google Scholar

[11] M. Taseidifar, F. Makavipour, R.M. Pashley, A.F.M.M. Rahman, Removal of heavy metal ions from water using ion flotation, Environmental Technology & Innovation. 8 (2017) 182–.

DOI: 10.1016/j.eti.2017.07.002

Google Scholar

[12] D. Martín-Yerga, A. Costa-García, Recent advances in the electrochemical detection of mercury, Current Opinion in Electrochemistry. 3 (2017) 91–96.

DOI: 10.1016/j.coelec.2017.06.012

Google Scholar

[13] J.H. Park, J.J. Wang, R. Xiao, S.M. Pensky, M. Kongchum, R.D. DeLaune, D.C. Seo, Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands, Chemosphere. 195 (2018) 455–462.

DOI: 10.1016/j.chemosphere.2017.12.104

Google Scholar

[14] Z. Zhou, Y. Liu, S. Liu, H. Liu, G. Zeng, X. Tan, C. Yang, Y. Ding, Z. Yan, X. Cai, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar, Chemical Engineering Journal. 314 (2017) 223–231.

DOI: 10.1016/j.cej.2016.12.113

Google Scholar

[15] Z. Shi, C. Xu, H. Guan, L. Li, L. Fan, Y. Wang, L. Liu, Q. Meng, R. Zhang, Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 539 (2018) 382–390.

DOI: 10.1016/j.colsurfa.2017.12.043

Google Scholar

[16] R.E. Haouti, Z. Anfar, S. Et-Taleb, M. Benafqir, S. Lhanafi, N.E. Alem, Removal of heavy metals and organic pollutants by a sand rich in iron oxide, Euro-Mediterranean Journal for Environmental Integration. 3 (2018).

DOI: 10.1007/s41207-018-0058-9

Google Scholar

[17] P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, Silica coated magnetite particles for magnetic removal of Hg2+ from water, Journal of Colloid and Interface Science. 345 (2010) 234–240.

DOI: 10.1016/j.jcis.2010.01.087

Google Scholar

[18] R. Roto, Y. Yusran, A. Kuncaka, Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption, Applied Surface Science. 377 (2016) 30–36.

DOI: 10.1016/j.apsusc.2016.03.099

Google Scholar

[19] S. Bahtiar, A. Taufiq, Sunaryono, A. Hidayat, N. Hidayat, M. Diantoro, N. Mufti, Mujamilah, Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand, IOP Conference Series: Materials Science and Engineering. 202 (2017) 012052.

DOI: 10.1088/1757-899x/202/1/012052

Google Scholar

[20] F. Behrad, M. Helmi Rashid Farimani, N. Shahtahmasebi, M. Rezaee Roknabadi, M. Karimipour, Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance, The European Physical Journal Plus. 130 (2015).

DOI: 10.1140/epjp/i2015-15144-y

Google Scholar

[21] M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senilă, O. Marincas, L. Barbu-Tudoran, Magnetic recoverable Fe3O4-TiO2 :Eu composite nanoparticles with enhanced photocatalytic activity, Applied Surface Science. 390 (2016) 248–259.

DOI: 10.1016/j.apsusc.2016.08.084

Google Scholar

[22] I. Ramalla, R.K. Gupta, K. Bansal, Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability, International Journal of Engineering & Technology. 4 (2015) 509.

DOI: 10.14419/ijet.v4i4.5405

Google Scholar

[23] T.N. Tran, T.V. Anh Pham, M.L. Phung Le, T.P. Thoa Nguyen, V.M. Tran, Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane, Advances in Natural Sciences: Nanoscience and Nanotechnology. 4 (2013) 045007.

DOI: 10.1088/2043-6262/4/4/045007

Google Scholar

[24] J.Y. Lin, B.X. Wang, Room-Temperature Voltage Stressing Effects on Resistive Switching of Conductive-Bridging RAM Cells with Cu-Doped SiO2 Films, Advances in Materials Science and Engineering. 2014 (2014) 1–6.

DOI: 10.1155/2014/594516

Google Scholar

[25] J.H. Wei, C.J. Leng, X.Z. Zhang, W.H. Li, Z.Y. Liu, J. Shi, Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposite, Journal of Physics: Conference Series. 149 (2009) 012083.

Google Scholar

[26] M. Sureshkumar, D.Y. Siswanto, C.K. Lee, Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles, Journal of Materials Chemistry. 20 (2010) 6948.

DOI: 10.1039/c0jm00565g

Google Scholar

[27] L. Zhang, H. Shao, H. Zheng, T. Lin, Z. Guo, Synthesis, and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process, International Journal of Minerals, Metallurgy, and Materials. 23 (2016) 1112–1118.

DOI: 10.1007/s12613-016-1329-6

Google Scholar

[28] L. Wang, C. Shen, Y. Cao, PVP modified Fe3O4@SiO2 nanoparticles as a new adsorbent for hydrophobic substances, Journal of Physics and Chemistry of Solids. 133 (2019) 28–34.

DOI: 10.1016/j.jpcs.2019.05.004

Google Scholar

[29] B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2. ed, IEEE Press, Piscataway, NJ, (2009).

Google Scholar

[30] P. Arévalo-Cid, J. Isasi, F. Martín-Hernández, Comparative study of core-shell nanostructures based on amino-functionalized Fe3O4@SiO2 and CoFe2O4@SiO2 nanocomposites, Journal of Alloys and Compounds. 766 (2018) 609–618.

DOI: 10.1016/j.jallcom.2018.06.246

Google Scholar

[31] S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, J. Zhou, Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal, Chemical Engineering Journal. 226 (2013) 30–38.

DOI: 10.1016/j.cej.2013.04.060

Google Scholar