[1]
L. Duan, X. Wang, D. Wang, Y. Duan, N. Cheng, G. Xiu, Atmospheric mercury speciation in Shanghai, China, Science of The Total Environment. 578 (2017) 460–468.
DOI: 10.1016/j.scitotenv.2016.10.209
Google Scholar
[2]
D.L. Gallup, D.J. O'Rear, R. Radford, The behavior of mercury in water, alcohols, monoethylene glycol, and triethylene glycol, Fuel. 196 (2017) 178–184.
DOI: 10.1016/j.fuel.2017.01.100
Google Scholar
[3]
J. Wang, X. Feng, C.W.N. Anderson, Y. Xing, L. Shang, Remediation of mercury contaminated sites – A review, Journal of Hazardous Materials. 221–222 (2012) 1–18.
DOI: 10.1016/j.jhazmat.2012.04.035
Google Scholar
[4]
A. Moreno-Ortega, R. Moreno-Rojas, J.R. Martínez-Álvarez, M. González Estecha, N.P. Castro González, M.Á. Amaro López, Probabilistic risk analysis of mercury intake via food consumption in Spain, Journal of Trace Elements in Medicine and Biology. 43 (2017) 135–141.
DOI: 10.1016/j.jtemb.2016.12.014
Google Scholar
[5]
M. Vigeh, E. Nishioka, K. Ohtani, Y. Omori, T. Matsukawa, S. Koda, K. Yokoyama, Prenatal mercury exposure and birth weight, Reproductive Toxicology. 76 (2018) 78–83.
DOI: 10.1016/j.reprotox.2018.01.002
Google Scholar
[6]
M. Akerstrom, L. Barregard, T. Lundh, G. Sallsten, Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring, Toxicology and Applied Pharmacology. 320 (2017) 17–25.
DOI: 10.1016/j.taap.2017.02.007
Google Scholar
[7]
A.L.V. Milioni, B.V. Nagy, A.L.A. Moura, E.C. Zachi, M.T.S. Barboni, D.F. Ventura, Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry, NeuroToxicology. 59 (2017) 263–269.
DOI: 10.1016/j.neuro.2016.04.010
Google Scholar
[8]
P.D. Pigatto, A. Costa, G. Guzzi, Are mercury and Alzheimer's disease linked?, Science of The Total Environment. 613–614 (2018) 1579–1580.
DOI: 10.1016/j.scitotenv.2017.09.036
Google Scholar
[9]
C. Lewis, Parkinson's true passion, New Scientist. 234 (2017) 42–43.
Google Scholar
[10]
M. Urgun-Demirtas, P.L. Benda, P.S. Gillenwater, M.C. Negri, H. Xiong, S.W. Snyder, Achieving very low mercury levels in refinery wastewater by membrane filtration, Journal of Hazardous Materials. 215–216 (2012) 98–107.
DOI: 10.1016/j.jhazmat.2012.02.040
Google Scholar
[11]
M. Taseidifar, F. Makavipour, R.M. Pashley, A.F.M.M. Rahman, Removal of heavy metal ions from water using ion flotation, Environmental Technology & Innovation. 8 (2017) 182–.
DOI: 10.1016/j.eti.2017.07.002
Google Scholar
[12]
D. Martín-Yerga, A. Costa-García, Recent advances in the electrochemical detection of mercury, Current Opinion in Electrochemistry. 3 (2017) 91–96.
DOI: 10.1016/j.coelec.2017.06.012
Google Scholar
[13]
J.H. Park, J.J. Wang, R. Xiao, S.M. Pensky, M. Kongchum, R.D. DeLaune, D.C. Seo, Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands, Chemosphere. 195 (2018) 455–462.
DOI: 10.1016/j.chemosphere.2017.12.104
Google Scholar
[14]
Z. Zhou, Y. Liu, S. Liu, H. Liu, G. Zeng, X. Tan, C. Yang, Y. Ding, Z. Yan, X. Cai, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar, Chemical Engineering Journal. 314 (2017) 223–231.
DOI: 10.1016/j.cej.2016.12.113
Google Scholar
[15]
Z. Shi, C. Xu, H. Guan, L. Li, L. Fan, Y. Wang, L. Liu, Q. Meng, R. Zhang, Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 539 (2018) 382–390.
DOI: 10.1016/j.colsurfa.2017.12.043
Google Scholar
[16]
R.E. Haouti, Z. Anfar, S. Et-Taleb, M. Benafqir, S. Lhanafi, N.E. Alem, Removal of heavy metals and organic pollutants by a sand rich in iron oxide, Euro-Mediterranean Journal for Environmental Integration. 3 (2018).
DOI: 10.1007/s41207-018-0058-9
Google Scholar
[17]
P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, Silica coated magnetite particles for magnetic removal of Hg2+ from water, Journal of Colloid and Interface Science. 345 (2010) 234–240.
DOI: 10.1016/j.jcis.2010.01.087
Google Scholar
[18]
R. Roto, Y. Yusran, A. Kuncaka, Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption, Applied Surface Science. 377 (2016) 30–36.
DOI: 10.1016/j.apsusc.2016.03.099
Google Scholar
[19]
S. Bahtiar, A. Taufiq, Sunaryono, A. Hidayat, N. Hidayat, M. Diantoro, N. Mufti, Mujamilah, Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand, IOP Conference Series: Materials Science and Engineering. 202 (2017) 012052.
DOI: 10.1088/1757-899x/202/1/012052
Google Scholar
[20]
F. Behrad, M. Helmi Rashid Farimani, N. Shahtahmasebi, M. Rezaee Roknabadi, M. Karimipour, Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance, The European Physical Journal Plus. 130 (2015).
DOI: 10.1140/epjp/i2015-15144-y
Google Scholar
[21]
M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senilă, O. Marincas, L. Barbu-Tudoran, Magnetic recoverable Fe3O4-TiO2 :Eu composite nanoparticles with enhanced photocatalytic activity, Applied Surface Science. 390 (2016) 248–259.
DOI: 10.1016/j.apsusc.2016.08.084
Google Scholar
[22]
I. Ramalla, R.K. Gupta, K. Bansal, Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability, International Journal of Engineering & Technology. 4 (2015) 509.
DOI: 10.14419/ijet.v4i4.5405
Google Scholar
[23]
T.N. Tran, T.V. Anh Pham, M.L. Phung Le, T.P. Thoa Nguyen, V.M. Tran, Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane, Advances in Natural Sciences: Nanoscience and Nanotechnology. 4 (2013) 045007.
DOI: 10.1088/2043-6262/4/4/045007
Google Scholar
[24]
J.Y. Lin, B.X. Wang, Room-Temperature Voltage Stressing Effects on Resistive Switching of Conductive-Bridging RAM Cells with Cu-Doped SiO2 Films, Advances in Materials Science and Engineering. 2014 (2014) 1–6.
DOI: 10.1155/2014/594516
Google Scholar
[25]
J.H. Wei, C.J. Leng, X.Z. Zhang, W.H. Li, Z.Y. Liu, J. Shi, Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposite, Journal of Physics: Conference Series. 149 (2009) 012083.
Google Scholar
[26]
M. Sureshkumar, D.Y. Siswanto, C.K. Lee, Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles, Journal of Materials Chemistry. 20 (2010) 6948.
DOI: 10.1039/c0jm00565g
Google Scholar
[27]
L. Zhang, H. Shao, H. Zheng, T. Lin, Z. Guo, Synthesis, and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process, International Journal of Minerals, Metallurgy, and Materials. 23 (2016) 1112–1118.
DOI: 10.1007/s12613-016-1329-6
Google Scholar
[28]
L. Wang, C. Shen, Y. Cao, PVP modified Fe3O4@SiO2 nanoparticles as a new adsorbent for hydrophobic substances, Journal of Physics and Chemistry of Solids. 133 (2019) 28–34.
DOI: 10.1016/j.jpcs.2019.05.004
Google Scholar
[29]
B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2. ed, IEEE Press, Piscataway, NJ, (2009).
Google Scholar
[30]
P. Arévalo-Cid, J. Isasi, F. Martín-Hernández, Comparative study of core-shell nanostructures based on amino-functionalized Fe3O4@SiO2 and CoFe2O4@SiO2 nanocomposites, Journal of Alloys and Compounds. 766 (2018) 609–618.
DOI: 10.1016/j.jallcom.2018.06.246
Google Scholar
[31]
S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, J. Zhou, Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal, Chemical Engineering Journal. 226 (2013) 30–38.
DOI: 10.1016/j.cej.2013.04.060
Google Scholar