[1]
S. Deng, X. Wang, J. Zhang, Z. Liu, H. Mikul, H. Tan, N. Dui, A kinetic study on the catalysis of KCl , K 2 SO 4 , and K 2 CO 3 during oxy- biomass combustion, 218 (2018) 50–58.
DOI: 10.1016/j.jenvman.2018.04.057
Google Scholar
[2]
M. Jia, B. Fong, A. Chun, M. Loy, B. Lai, F. Chin, M.K. Lam, S. Yusup, Z.A. Jawad, Catalytic Pyrolysis of Chlorella Vulgaris : Kinetic and, Bioresour. Technol. (2019) 121689.
DOI: 10.1016/j.biortech.2019.121689
Google Scholar
[3]
Sukarni, Sudjito, N. Hamidi, U. Yanuhar, I.N.G. Wardana, Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere, Front. Energy 9 (2) (2015) 125–133.
DOI: 10.1007/s11708-015-0346-x
Google Scholar
[4]
S. Sukarni, U. Yanuhar, I.N.G. Wardana, S. Sudjito, N. Hamidi, W. Wijayanti, Y. Wibisono, S. Sumarli, I.M. Nauri, H. Suryanto, Combustion of Microalgae Nannochloropsis oculata Biomass: Cellular Macromolecular and Mineralogical Content Changes During Thermal Decomposition, Songklanakarin J. Sci. Technol. 40 (6) (2018) 1456–1463.
DOI: 10.1007/s11708-015-0346-x
Google Scholar
[5]
M. Safar, B. Lin, W. Chen, D. Langauer, J. Chang, H. Raclavska, A. Pétrissans, P. Rousset, M. Pétrissans, Catalytic effects of potassium on biomass pyrolysis , combustion and torrefaction, Appl. Energy 235 (October 2018) (2019) 346–355.
DOI: 10.1016/j.apenergy.2018.10.065
Google Scholar
[6]
J. Popp, Z. Lakner, M. Harangi-rákos, M. Fári, The effect of bioenergy expansion : Food , energy , and environment, Renew. Sustain. Energy Rev. 32 (2014) 559–578.
DOI: 10.1016/j.rser.2014.01.056
Google Scholar
[7]
Z. Xiao-yang, ScienceDirect Developing bioenergy to tackle climate change : Bioenergy path and practice of Tianguan group, Adv. Clim. Chang. Res. 7 (1-2) (2016) 17–25.
Google Scholar
[8]
Y. Huang, P. Cheng, P. Chiueh, S. Lo, Leucaena biochar produced by microwave torrefaction : Fuel properties and energy efficiency, Appl. Energy (2017).
DOI: 10.1016/j.apenergy.2017.03.007
Google Scholar
[9]
S. van loo and jaap Kopejan, the hand book of biomass combustion and co-firing, (2008).
Google Scholar
[10]
J. Liu, L. Huang, G. Sun, J. Chen, S. Zhuang, K. Chang, W. Xie, J. Kuo, Y. He, S. Sun, M. Buyukada, F. Evrendilek, (Co-)combustion of additives, water hyacinth and sewage sludge: Thermogravimetric, kinetic, gas and thermodynamic modeling analyses, Waste Manag. 81 (2018) 211–219.
DOI: 10.1016/j.wasman.2018.09.030
Google Scholar
[11]
M. Saber, A. Golzary, M. Hosseinpour, F. Takahashi, K. Yoshikawa, Catalytic hydrothermal liquefaction of microalgae using nanocatalyst, Appl. Energy 183 (2016) 566–576.
DOI: 10.1016/j.apenergy.2016.09.017
Google Scholar
[12]
R. Yuan, S. Yu, Y. Shen, Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues, Waste Manag. 87 (2019) 86–96.
DOI: 10.1016/j.wasman.2019.02.009
Google Scholar
[13]
K. Acikalin, Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis, J. Therm. Anal. Calorim. 109 (1) (2012) 227–235.
DOI: 10.1007/s10973-011-1714-3
Google Scholar
[14]
Q. Xu, X. Ma, Z. Yu, Z. Cai, A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry, Appl. Therm. Eng. 73 (1) (2014) 355–359.
DOI: 10.1016/j.applthermaleng.2014.07.068
Google Scholar
[15]
A. Prasetiyo, S. Sukarni, R. Wulandari, H. Suryanto, U. Yanuhar, Investigation on kinetic parameters during combustion of Tetraselmis chuii microalgae under thermogravimetric analyzer, (2019).
DOI: 10.1063/5.0013582
Google Scholar
[16]
J. Shao, R. Yan, H. Chen, H. Yang, D.H. Lee, Catalytic effect of metal oxides on pyrolysis of sewage sludge, Fuel Process. Technol. 91 (9) (2010) 1113–1118.
DOI: 10.1016/j.fuproc.2010.03.023
Google Scholar
[17]
Sukarni, Sudjito, N. Hamidi, U. Yanuhar, I.N.G. Wardana, Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock, Int. J. Energy Environ. Eng. 5 (4) (2014) 279–290.
DOI: 10.1007/s40095-014-0138-9
Google Scholar