Arrhenius Kinetic Analysis during Combustion of Spirulina platensis Microalgae

Article Preview

Abstract:

Characteristics and potential of microalgae Spirulina platensis as an energy source were studied in regard to the decomposition patterns, as well as kinetic and thermodynamic parameters. The thermogravimetric analysis was performed using the TGA instrument (Mettler Toledo TG DSC 1) at a heating rate of 30 °C/min, with an atmospheric air flow-rate of 100 ml/min at the temperature range of 25-1000 °C. The kinetic was evaluated using a differential method of Arrhenius. The results showed that Spirulina platensis microalgae decomposed into three stages. The first stage is related to the evaporation of moisture, the second stage is associated with the release of volatile matter, and the final stage is the combustion stage of char. The kinetic evaluation resulted in the respective activation energy (), pre-exponential factor (log A) and reaction order (n) are 53.57 kJ/mol, 4.4 min-1, and 1.73. It also understands from the thermodynamic analysis that the respective values of enthalpy (), Gibbs free energy ( and the entropies ( were 48.50 kJ/mol, 146,73 kJ/mol, and-174,78 J/mol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-148

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BPPT, Outlook Energy Indonesia 2018, Badan Pengkajian dan Penerapan Teknologi (BPPT), (2018).

DOI: 10.14203/icdi.v4i.81

Google Scholar

[2] S. Yokoyama, Buku Panduan Biomassa Asia Panduan untuk Produksi dan Pemanfaatan Biomassa The Japan Institute of Energy, The Japan Institute of Energy, Jepang, (2008).

Google Scholar

[3] K.K. dan P.R. Indonesia, Kementerian Kelautan dan Perikanan Republik Indonesia, Https://kkp.go.id/ (2017).

Google Scholar

[4] Sukarni, Sudjito, N. Hamidi, U. Yanuhar, I.N.G. Wardana, Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock, Int. J. Energy Environ. Eng. 5 (4) (2014) 279–290.

DOI: 10.1007/s40095-014-0138-9

Google Scholar

[5] Prambada, Karakteristik Dekomposisi Pembakaran Bahan Bakar Campuran Mikroalga Spirulina Platensis Dengan Kulit Kacang Tanah, Universitas Negeri Malang, (2016).

Google Scholar

[6] Sukarni, Sudjito, N. Hamidi, U. Yanuhar, I.N.G. Wardana, Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere, Front. Energy 9 (2) (2015) 125–133.

DOI: 10.1007/s11708-015-0346-x

Google Scholar

[7] M. Jia, B. Fong, A. Chun, M. Loy, B. Lai, F. Chin, M.K. Lam, S. Yusup, Z.A. Jawad, Catalytic Pyrolysis of Chlorella Vulgaris : Kinetic and, Bioresour. Technol. (2019) 121689.

DOI: 10.1016/j.biortech.2019.121689

Google Scholar

[8] R. López, C. Fernández, X. Gómez, O. Martínez, M.E. Sánchez, Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion, J. Therm. Anal. Calorim. 114 (1) (2013) 295–305.

DOI: 10.1007/s10973-012-2843-z

Google Scholar

[9] Y.A. Cengel, M.A. Boles, Thermodynamics An Engineering Approach, (2015).

Google Scholar

[10] S.R. Naqvi, R. Tariq, Z. Hameed, I. Ali, W. Chen, S. Ceylan, H. Rashid, J. Ahmad, S.A. Taqvi, Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method, Renew. Energy (2018).

DOI: 10.1016/j.renene.2018.07.094

Google Scholar

[11] S.H. Kim, Investigation of Thermodynamic Parameters in the Thermal Decomposition of Plastic Waste - Waste Lube Oil Compounds, Environ. Sci. Technol 44 (13) (2010) 5313–5317.

DOI: 10.1021/es101163e

Google Scholar

[12] Q. Wang, W. Zhao, H. Liu, C. Jia, H. Xu, Reactivity and Kinetic Analysis of Biomass during Combustion, Energy Procedia 17 (2012) 869–875.

DOI: 10.1016/j.egypro.2012.02.181

Google Scholar

[13] S. Shawalliah, N. Abd, K. Ismail, Bioresource Technology Combustion characteristics of Malaysian oil palm biomass , sub-bituminous coal and their respective blends via thermogravimetric analysis ( TGA ), Bioresour. Technol. 123 (2012) (2012) 581–591.

DOI: 10.1016/j.biortech.2012.07.065

Google Scholar

[14] K. Acikalin, Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis, J. Therm. Anal. Calorim. 109 (1) (2012) 227–235.

DOI: 10.1007/s10973-011-1714-3

Google Scholar

[15] S. Sumarli, C. Upendra, S. Bandhana, K. Himawan, Physicochemical Characteristics of Corn Silk as Biomass Fuel Feedstock, 515 (2019) 1–5.

DOI: 10.1088/1757-899x/515/1/012103

Google Scholar

[16] Y. Xu, B. Chen, Bioresource Technology Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis, Bioresour. Technol. 146 (2013) 485–493.

DOI: 10.1016/j.biortech.2013.07.086

Google Scholar

[17] L. Huang, J. Liu, Y. He, S. Sun, J. Chen, J. Sun, K.L. Chang, J. Kuo, X. Ning, Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2atmosphere as biomass to solid biofuel, Bioresour. Technol. 218 (2016) 631-642.

DOI: 10.1016/j.biortech.2016.06.133

Google Scholar

[18] A.A.D. Maia, L.C. de Morais, Kinetic parameters of red pepper waste as biomass to solid biofuel, Bioresour. Technol. 204 (2016) 157–163.

DOI: 10.1016/j.biortech.2015.12.055

Google Scholar