Fracture Propagation Pathways Pattern on UV-Irradiated Double-Edge Cracked of Mordenite Zeolite-HDPE Composites

Article Preview

Abstract:

Mechanical failure of zeolite-high density polyethylene (HDPE) material applied to skull bone implants is a material fracture that cannot be controlled. An important step to minimize failure due to fracture is to understand the fracture characteristics indicated by the propagation path pattern. This study aimed to investigate the fracture propagation pathways of zeolite-HDPE composites in quasi-static conditions. UV-irradiated Double-edge cracked zeolite-HDPE composite was tested in mode I (a stress perpendicular to the plane of the crack) in a universal testing machine (UTM) with a crosshead speed of 2 mm/min at a constant room temperature of approximately 25°C. The stress and elongation were registered by the UTM. During loading, the evolution of cracks in the ligament length region was recorded with the camera so that the crack propagation pathway until the total fracture occurs can be clearly observed. The results show that the crack propagation pathway patterns were not all straight and parallel to the ligament length. They are also found in a deviant state of the ligament length line by forming an angle α. created between the ligament length line and the fracture propagation deviation direction. This deviation occurs after the crack propagates straight away from the initial-cracks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-134

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Sharma, Use of HDPE implants in facial skeletal augmentation: Should we rush for it?, Indian J Plast Surg. 43(2010) 40–41.

DOI: 10.1055/s-0039-1699401

Google Scholar

[2] N.J. Mokal, M.F Desai, Calvarial reconstruction using high-density porous polyethylene cranial hemispheres, Indian J Plast Surg. 44 (2011) 422-431.

DOI: 10.4103/0970-0358.90812

Google Scholar

[3] D. Banoriya, R. Purohit, R.K. Dwivedi, Advanced Application of Polymer based Biomaterials, Materials Today: Proceedings. 4(2017), Part A, 3534-3541.

DOI: 10.1016/j.matpr.2017.02.244

Google Scholar

[4] I. Fernandez-Bueno, S.D Lauro, I. Alvarez, J.C. Lopez, M.T. Garcia-Gutierrez, I. Fernandez, E. Larra, J.C. Pastor, Safety and biocompatibility of a new high-density polyethylene-based spherical integrated porous orbital implant: an experimental study in rabbits, Journal of Ophthalmology, 2015(2015) Article ID 904096.

DOI: 10.1155/2015/904096

Google Scholar

[5] S. Xu, A. Akchurin, T. Liu, W. Wood, X.W. Tangpong, I.S Akhatov, W.-H. Zhong, Mechanical properties, tribological behavior, and biocompatibility of high-density polyethylene/carbon nanofibers nanocomposites, Journal of Composite Materials, 49(2015) 1503-1512.

DOI: 10.1177/0021998314535959

Google Scholar

[6] V.C. McLain, Final report on the safety assessment of polyethylene, Int J Toxicol. 26 (2007) 115-127.

Google Scholar

[7] A. Martínez-Romo, R. González-Mota, J.J. Soto-Bernal, I. Rosales-Candelas, Investigating the degradability of HDPE, LDPE, PE-BIO, and PE-OXO films under UV-B radiation, J Spectrosc. 2015 (2015) Article ID 586514.

DOI: 10.1155/2015/586514

Google Scholar

[8] K.A. Jassim, W.H. Jassim, S.H. Mahdi, The effect of sunlight on medium density polyethylene water pipes, Energy Procedia. 119 (2017) 650-655.

DOI: 10.1016/j.egypro.2017.07.091

Google Scholar

[9] E. Erawati, Hamid, A.A. Ilma, Pyrolysis Process of Mixed Polypropylene (PP) and High-Density Polyethylene (HDPE) Waste with Natural Zeolite as Catalyst, Molekul 13 (2018) 106-113.

DOI: 10.20884/1.jm.2018.13.2.400

Google Scholar

[10] Purnomo, P.H. Setyarini, Atmospheric-pressure annealing effect on the impact fracture toughness of injection-molded zeolite-HDPE composite, International Review of Mechanical Engineering 12 (2018) 556-562.

DOI: 10.15866/ireme.v12i6.15034

Google Scholar

[11] Purnomo, P.H. Setyarini, D. Sulistyaningsih, Zeolite-based biomaterials for biomedical application: A review, AIP Conference Proceedings 1977 (2018) 030013.

DOI: 10.1063/1.5042933

Google Scholar

[12] Purnomo, M. Subri, P.H. Setyarini, Fracture development and deformation behavior of zeolite-filled high density polyethylene annealed composites in the plane stress fracture, FME Transactions 46 (2018) 165-170.

DOI: 10.5937/fmet1802157z

Google Scholar

[13] Purnomo, M. Subri, Post-yield fracture behavior of zeolite-reinforced high density polyethylene annealed composite, International Review of Mechanical Engineering 11 (2017) 87-93.

DOI: 10.15866/ireme.v11i1.10542

Google Scholar

[14] A. Zotti, S. Zuppolini, A. Borriello, M. Zarrelli, Thermal properties and fracture toughness of epoxy nanocomposites loaded with hyperbranched-polymers-based core/shell nanoparticles, Nanomaterials (Basel) 9 (2019) 418.

DOI: 10.3390/nano9030418

Google Scholar

[15] L. Qian, T. Kobayashi, H. Toda, T. Goda, Z.-g. Wang, Fracture toughness of a 6061Al matrix composite reinforced with fine SiC particles, Mater Trans. 43 (2002) 2838 – 2842.

DOI: 10.2320/matertrans.43.2838

Google Scholar

[16] T. Nazir, A. Afzala, H.M. Siddiqi, Z. Ahmad, M. Dumon, Thermally and mechanically superior hybrid epoxy–silica polymer films via sol–gel method. Prog. Org. Coat. 69 (2010) 100–106.

DOI: 10.1016/j.porgcoat.2010.05.012

Google Scholar

[17] D. Quan, A. Ivankovic, Effect of coreeshell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66 (2015) 16–28.

DOI: 10.1016/j.polymer.2015.04.002

Google Scholar

[18] A.Y. Al-Maharma, P. Sendur, N. Al-Huniti, Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites, Mater Res Express. 6 (2018) 012003.

DOI: 10.1088/2053-1591/aae867

Google Scholar

[19] D. Liu, B. Šavija, G.E. Smith, P.E.J. Flewitt, T. Lowe, E. Schlangen, Towards understanding the influence of porosity on mechanical and fracture behaviour of quasi-brittle materials: experiments and modelling, Int J Fract. 205 (2017) 57–72.

DOI: 10.1007/s10704-017-0181-7

Google Scholar

[20] J. Hohe, S. Luckow, V. Hardenacke, Y. Sguaizer, D. Siegele, Enhanced fracture assessment under biaxial external loads using small scale cruciform bending specimens, Eng. Fract. Mech. 78 (2011) 1876-1894.

DOI: 10.1016/j.engfracmech.2011.03.013

Google Scholar

[21] G.A. Pantazopoulos, A short review on fracture mechanisms of mechanical components operated under industrial process conditions: fractographic analysis and selected prevention strategies, Metals 9 (2019) 148.

DOI: 10.3390/met9020148

Google Scholar

[22] D. Abdelkader, B. Mostefa, A. Aid, A. Talha, N. Benseddiq, B. Mohamed, Experimental analysis and damage modeling of high-density polyethylene under fatigue loading, Acta Mech Solida Sin. 29 (2016) 133-144.

DOI: 10.1016/s0894-9166(16)30102-1

Google Scholar

[23] E.Q. Clutton, ESIS TC4 experience with the essential work of fracture method, European Structural Integrity Society 27 (2000) 187-199.

DOI: 10.1016/s1566-1369(00)80018-7

Google Scholar

[24] F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, N. Pugno. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair, Progress in Materials Science 83 (2016) 536–573.

DOI: 10.1016/j.pmatsci.2016.07.007

Google Scholar

[25] B.R.K. Chunchu, J. Putta, Rheological and strengt behavior of binary blended SCC replacing partial fine aggregate with plastic e-waste as high impact polystyrene, Buildings 9 (2019) 50.

DOI: 10.3390/buildings9020050

Google Scholar

[26] K. Fujimoto, Z. Tang, W. Shinoda, S. Okazaki, All-atom molecular dynamics study of impact fracture of glassy polymers. I: Molecular mechanism of brittleness of PMMA and ductility of PC, Polymer, Volume 178 (2019), 121570.

DOI: 10.1016/j.polymer.2019.121570

Google Scholar