Punch Tool Speed and Material Effect on Keychain Cranioplasty Plate Dimensions Using Finite Element Method

Article Preview

Abstract:

This article explained the tolerance analysis method in the micro-manufacture area on the keychain cranioplasty plate product dimensions. This research aimed to compare the simulations of keychain cranioplasty plate product dimensions using the ISO 286 tolerance standard. The manufacturing process to produce the keychain cranioplasty plate used the blanking process. The dimensions analysis aimed to observe the effect of punching speed and tool punch material on the product’s quality. The ISO 286 tolerance on blanking product used IT Grade of 10 for the punching process. The keychain cranioplasty plate dimensions from the blanking process simulation had an excellent quality if the sizes were close to the actual product’s dimensions. The keychain cranioplasty plate product had to have a high precision level between 10–100 μm so that the medical field could use it.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Narayana, P. Kanalah, K.V. Reddy, Machine Drawing, (New Age International Limited Publisher, 2006).

Google Scholar

[2] Kverneland, Knut O., Metric Standards for Worldwide Manufacturing, (GO metric USATM. org, Inc., 2012), Statesville, North Carolina, USA.

Google Scholar

[3] Besinis, A., Hadi, S. D., Le, H. R., C. Tredwin & Handy, R. D., Antibacterial Activity and Biofilm Inhibition By Surface Modified Titanium Alloy Medical Implants Following Application of Silver, Titanium Dioxide And Hydroxyapatite Nanocoatings. (Nanotoxicology Vol. 11, No. 3, 327–338, 2017).

DOI: 10.1080/17435390.2017.1299890

Google Scholar

[4] Khader, Basel A., and Osanna, Mark R. T., Materials and techniques used in cranioplasty fixation: A review. (Materials Science and Engineering C 66 2016), p.315–322.

DOI: 10.1016/j.msec.2016.04.101

Google Scholar

[5] Osanna, P.H., Durakbasa, M.N., Yaghmaei, K., & Kräuter, L, Quality Control and Nanometrology for Micro/Nano Surface Modification of Orthopaedic/Dental Implants. (Proceedings of the 7th International Conference, Smolenice, Slovakia.H.Y.

Google Scholar

[6] Chan, A.B. Abdullah. (Appl. Sci. Eng, Technol. J. E 8), 1139-1148.

Google Scholar

[7] Smith, D. Alkire. Die Materials and Treatments. (530 Hollywood Drive, Monroe, Michigan, 2005).

Google Scholar

[8] L. Bohdal, L. Kukielka, J. Chodor, A. Kulakowska et al. 3D Finite Element Modelling of Sheet Metal Blanking Process, (AIP Conference Proceedings 1960, 2018) 070006.

DOI: 10.1063/1.5034902

Google Scholar

[9] Y Liua, L Huaa, H Maob, W Feng. Finite element simulation of effect of part shape on forming quality in fine-blanking process. (Procedia Engineering 81, 2014), p.1108 – 1113.

DOI: 10.1016/j.proeng.2014.10.211

Google Scholar

[10] Thipprakmas, S., Finite element analysis of V-ring indenter mechanism in fine-blanking process. Volume 30, Issue 3, March 2009, Pages 526-531.

DOI: 10.1016/j.matdes.2008.05.072

Google Scholar

[11] S. Ivana, 2006. Handbook of Die Design Second Edition. McGraw-Hill Companies.

Google Scholar

[12] D. Z. Lubis, & M. Mahardika, Influence of Clearance and Punch Velocity on the Quality of Pure Thin Copper Sheets Blanked Parts. (IOP Conf. Series: Materials Science and Engineering, 2016).

DOI: 10.1088/1757-899x/157/1/012012

Google Scholar

[13] D. Z. Lubis & I. Ristiawan, Blanking Clearance and Punch Velocity Effects on The Sheared Edge Characteristic in Micro-Blanking of Commercially Pure Copper Sheet. (Journal of Mechanical Engineering Science and Technology, 2017).

DOI: 10.17977/um016v1i22017p053

Google Scholar

[14] Lubis, Didin, Z., Suprayitno, A. Khoiruddin, & Firismanda, Andi, M. 2018. Elastic linear analysis of CNC micro blanking machine using finite element method. MATEC Web of Conferences 204, 07011 (2018), IMIEC 2018.Elias, C.N., Lima, J.H.C., Valiev, R., & Meyers, M.A. Bio. Mate. Sci. (2008).

DOI: 10.1051/matecconf/201820407011

Google Scholar

[15] Zhou, S., Yang, X., Sun J., Xu, W., & Liu X. 2015. Simulation of Micro Blanking Process of Square Hole with Fillet Based on DEFORM-3D. 3rd International Conference on Material, Mechanical, and Manufacturing Engineering.

DOI: 10.2991/ic3me-15.2015.398

Google Scholar

[16] Hansen, Nørgaard, H., Yang, Z., & Aminul, I. 2017. Tolerances in Micro Manufacturing. DTU Library, Technical Information Center of Denmark.

Google Scholar

[17] Supriadi, S., Kristianto, H., Whulanza, Y., Saragih, Dhelika, Latie & Taufiq. 2018. Fabrication of Magnesium Ecap Based Maxillary Miniplatetyped Implant Through the Method of Micro Forming. OP Conf. Series: Materials Science and Engineering 432 (2018) 012037.

DOI: 10.1088/1757-899x/432/1/012037

Google Scholar