Thermogravimetric Study on the Thermal Characteristics of Tetraselmis chuii Microalgae Pyrolysis in the Presence of Titanium dioxide

Article Preview

Abstract:

This study aims to analyze the thermal characteristics of Tetraselmis chuii (T.Chuii) microalgae in the presence of TiO2 (Titanium dioxide). The experiment was carried out on thermal analyzer equipment under inert condition. The blended sample has a mass ratio of microalgae and TiO2 that was 10:0.03 (wt%). The results of the thermal analysis show that the addition of TiO2 can change the temperature characteristics during the reaction process. The Coats-Redfern method is applied to calculate activation energy (Ea) resulted in the value of the blended fuel in the second stage that was 56.9 kJ/mol lower than that of pure microalgae that was 70.68 kJ/mol and conversely in the third stage the value of activation energy for blended fuel was 264.57 kJ/mol higher than pure microalgae that was 223.25 kJ/mol. Overall results pointed out that TiO2 had a significant impact on the thermal characteristic of Tetraselmis chuii during the pyrolysis process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-163

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.H. Chen, B.J. Lin, M.Y. Huang, J.S. Chang, Thermochemical conversion of microalgal biomass into biofuels: A review, Bioresour. Technol. 184 (2014) 314–327.

DOI: 10.1016/j.biortech.2014.11.050

Google Scholar

[2] P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer, Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, BioEnergy Res. 1 (1) (2008) 20–43.

DOI: 10.1007/s12155-008-9008-8

Google Scholar

[3] K. Cho, S. Hur, C. Lee, K. Ko, Y. Lee, K. Kim, M. Kim, Y. Chung, D. Kim, T. Oda, Bioflocculation of the oceanic microalga Dunaliella salina by the bloom- forming dinoflagellate Heterocapsa circularisquama , and its effect on biodiesel properties of the biomass, Bioresour. Technol. (2015).

DOI: 10.1016/j.biortech.2015.12.047

Google Scholar

[4] C. Kee, H. Chyuan, W. Chen, T. Chuan, E. Poh, Overview : Comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae, Energy Convers. Manag. 173 (2018) 81–94.

Google Scholar

[5] L.A. Andrade, F.R.X. Batista, T.S. Lira, M.A.S. Barrozo, L.G.M. Vieira, Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii, Renew. Energy 119 (x) (2018) 731–740.

DOI: 10.1016/j.renene.2017.12.056

Google Scholar

[6] C. Yusuf, Biodiesel from microalgae, Biotechnol. Adv. 25 (3) (2007) 294–306.

Google Scholar

[7] A.A.D. Maia, L.C. de Morais, Kinetic parameters of red pepper waste as biomass to solid biofuel, Bioresour. Technol. 204 (2016) 157–163.

DOI: 10.1016/j.biortech.2015.12.055

Google Scholar

[8] V. Anand, R. Gautam, R. Vinu, Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga, Fuel 205 (2017) 1–10.

DOI: 10.1016/j.fuel.2017.05.049

Google Scholar

[9] W. Zhou, B. Bai, G. Chen, L. Ma, Study on catalytic properties of potassium carbonate during the process of sawdust pyrolysis, Int. J. Hydrogen Energy 43 (2018) 13829–13841.

DOI: 10.1016/j.ijhydene.2018.02.002

Google Scholar

[10] Q. Xu, X. Ma, Z. Yu, Z. Cai, A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry, Appl. Therm. Eng. 73 (1) (2014) 355–359.

DOI: 10.1016/j.applthermaleng.2014.07.068

Google Scholar

[11] S. Wang, Y. Zhao, Study on the Mechanism of Calcium Oxide Combustion Desulfurization Catalyzed by Nano-titanium Oxide, Int. Conf. Power Eng. (2007) 679–683.

DOI: 10.1007/978-3-540-76694-0_127

Google Scholar

[12] D. Vamvuka, V. Tsamourgeli, M. Galetakis, Study on Catalytic Combustion of Biomass Mixtures with Poor Coals, Combust. Sci. Technol. (2013).

DOI: 10.1080/00102202.2013.846331

Google Scholar

[13] Y. Zhao, S. Wang, Y. Shen, X. Lu, Effects of nano-TiO 2 on combustion and desulfurization, Energy 56 (2013) 25–30.

Google Scholar

[14] K. Açikalin, Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis, J. Therm. Anal. Calorim. 109 (1) (2012) 227–235.

DOI: 10.1007/s10973-011-1714-3

Google Scholar

[15] A.E. Widiono, S. Sukarni, R. Wulandari, H. Suryanto, U. Yanuhar, Pyrolytic Thermal Decomposition Behavior and Kinetic Parameters of Tetraselmis chuii Microalgae, Int. Trop. Renew. Energy Conf. (to be pub (2019) (to be published).

DOI: 10.1063/5.0013643

Google Scholar

[16] J. Shao, R. Yan, H. Chen, H. Yang, D.H. Lee, Catalytic effect of metal oxides on pyrolysis of sewage sludge, Fuel Process. Technol. 91 (9) (2010) 1113–1118.

DOI: 10.1016/j.fuproc.2010.03.023

Google Scholar

[17] G. Liu, Y. Liao, S. Guo, X. Ma, C. Zeng, J. Wu, Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process, Appl. Therm. Eng. J. 98 (2016) 400-408.

DOI: 10.1016/j.applthermaleng.2015.12.067

Google Scholar

[18] Q. Liu, H. Hu, Q. Zhou, S. Zhu, G. Chen, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, Fuel 83 (6) (2004) 713–718.

DOI: 10.1016/j.fuel.2003.08.017

Google Scholar

[19] A. Raheem, W.A.K.G.W. Azlina, Y.H. Tau, M.K. Danquah, Thermochemical conversion of microalgal biomass for biofuel production, Renew. Sustain. Energy Rev. 49 (2015) 990–999.

DOI: 10.1016/j.rser.2015.04.186

Google Scholar

[20] A. Marcilla, L. Catalá, J.C. García-Quesada, F.J. Valdés, M.R. Hernández, A review of thermochemical conversion of microalgae, Renew. Sustain. Energy Rev. 27 (2013) 11–19.

DOI: 10.1016/j.rser.2013.06.032

Google Scholar