[1]
A. Rahi, K. Karimian, H. Heli, Nanostructured materials in electroanalysis of pharmaceuticals, Analytical biochemistry. 497 (2016) 39-47.
DOI: 10.1016/j.ab.2015.12.018
Google Scholar
[2]
M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk, Sensors and Actuators B: Chemical. 210 (2015) 149-157.
DOI: 10.1016/j.snb.2014.12.098
Google Scholar
[3]
E. Wierzbicka, G.D. Sulka, Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of epinephrine, Sensors and Actuators B: Chemical. 222 (2016) 270-279.
DOI: 10.1016/j.snb.2015.08.066
Google Scholar
[4]
S. Öztürk, A. Kösemen, Z.A. Kösemen, et al., Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors, Sensors and Actuators B: Chemical. 222 (2016) 280-289.
DOI: 10.1016/j.snb.2015.08.083
Google Scholar
[5]
B.L. Li, J. Wang, H.L. Zou, et al., Low‐dimensional transition metal dichalcogenide na-nostructures based sensors, Advanced Functional Materials. 26 (2016) 7034-7056.
DOI: 10.1002/adfm.201602136
Google Scholar
[6]
C. Zhao, P. Gai, R. Song, et al., Nanostructured material-based biofuel cells: recent advances and future prospects, Chemical Society Reviews. 46 (2017) 1545-1564.
DOI: 10.1039/c6cs00044d
Google Scholar
[7]
B.Y. Guan, X.Y. Yu, H.B. Wu, et al., Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion, Advanced materials. 29 (2017) 14-25.
DOI: 10.1002/adma.201703614
Google Scholar
[8]
S. Dutta, C. Ray, S. Sarkar, et al., Facile synthesis of bimetallic Au-Pt, Pd-Pt, and Au-Pd nanostructures: enhanced catalytic performance of Pd-Pt analogue towards fuel cell application and electrochemical sensing, Electrochimica Acta. 180 (2015) 1075-1084.
DOI: 10.1016/j.electacta.2015.09.062
Google Scholar
[9]
S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors[J], Talanta. 149 (2016) 30-42.
DOI: 10.1016/j.talanta.2015.11.033
Google Scholar
[10]
D. Zhang, M. Pang, J. Wu, et al., Experimental and density functional theory investigation of Pt-loaded titanium dioxide/molybdenum disulfide nanohybrid for SO2 gas sensing, New Journal of Chemistry. 43 (2019) 4900-4907.
DOI: 10.1039/c9nj00399a
Google Scholar
[11]
R. Sha, N. Vishnu, S. Badhulika, MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples[J], Sensors and Actuators B: Chemical. 279 (2019) 53-60.
DOI: 10.1016/j.snb.2018.09.106
Google Scholar
[12]
M.U. Anu Prathap, B. Kaur, R. Srivastava, Electrochemical sensor platforms based on nanostructured metal oxides, and zeolite‐based materials, The Chemical Record. 19 (2019) 883-907.
DOI: 10.1002/tcr.201800068
Google Scholar
[13]
M.A. Beluomini, J.L. da Silva, A.C. de Sa, et al., Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review, Journal of Electroanalytical Chemistry. 4 (2019) 99-104.
DOI: 10.1016/j.jelechem.2019.04.005
Google Scholar
[14]
P. Krzyczmonik, S. Skrzypek, Composites of Poly (3, 4-Ethylenedioxythiophene) with Nanostructures as Electrochemical Sensors for Application in Bioelectroanalysis, Current Analytical Chemistry. 15 (2019) 186-197.
DOI: 10.2174/1573411014666180423150941
Google Scholar
[15]
V. Gerbreders, M. Krasovska, I. Mihailova, et al., ZnO nanostructure-based electrochemical biosensor for Trichinella DNA detection, Sensing and Bio-Sensing Research. 23 (2019) 76-78.
DOI: 10.1016/j.sbsr.2019.100276
Google Scholar
[16]
E.M. Bakhsh, S.B. Khan, H.M. Marwani, et al., Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial, Journal of Industrial and Engineering Chemistry. 73 (2019) 118-127.
DOI: 10.1016/j.jiec.2019.01.014
Google Scholar