Morphological and Structural Analysis of Nd1(Fe)0.2Ba1.8Cu3O7-δ Oxide Material

Article Preview

Abstract:

Nd1(Fe)0.2Ba1.8Cu3O7-δ oxide material have been successfully synthesized by solid-state reaction with modified heat treatment process to improve the heat time efficiency, calcination at 950°C for six hours, sintering at 975°C fo six hours, and annealing at 450°C for six hours, respectively. The X-ray diffraction pattern shows that a single-phase form of Nd1(Fe)0.2Ba1.8Cu3O7-δ is an orthorhombic (Pmmm) structure. The Rietveld refinement analysis found, the lattice parameter are a = 3.8758Å, b = 3.9101Å, and c = 11.7190Å with χ2 = 1.394%. The SEM-EDAX image shows that the samples are form clusters with size estimates of 10 - 40μm, and the elemental composition of the oxide materials is Ba rich.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. H. Sujiono, P. Arifin, M. Barmawi, YBa2Cu3O7−δ thin films deposited by a vertical MOCVD reactor. Mater. Chem. Phys. 73 (2002) 47-50.

DOI: 10.1016/s0254-0584(01)00351-0

Google Scholar

[2] E. H. Sujiono, R. A. Sani, T. Saragih, P. Arifin, M. Barmawi, YBa2Cu3O7—δ Thin Films Deposited by MOCVD Vertical Reactor with a Flow Guide. Physica Status Solidi (A) Applied Research. 187 (2001) 471-479.

DOI: 10.1002/1521-396x(200110)187:2<471::aid-pssa471>3.0.co;2-m

Google Scholar

[3] M. Nakamura, Fabrication of NdBa2Cu3O7 single crystals by the top-seeded solution-growth method in 1%, 21%, and 100% oxygen partial pressure atmosphere. Phys. C: Superconductivity. 260 (1996) 297-304.

DOI: 10.1016/0921-4534(96)00138-4

Google Scholar

[4] H. Shaked, Structural, and superconducting properties of oxygen-deficient NdBa2Cu3O7-d. Phys. Rev. B: Condens. Matter. 41 (1990) 4173-4180.

Google Scholar

[5] M. Nakamura, M. Kambara, T. Umeda, Y. Shiohara, Effect of oxygen partial pressure on the neodymium solubility in BaCuO solvent. Phys. C Supercond. 266 (1996) 178-182.

DOI: 10.1016/0921-4534(96)00311-5

Google Scholar

[6] F. Parmigiani, G. Samoggia, C. Calandra, F. Manghi, Surface stoichiometry, and valence electronic structure of YBa2Cu3O7− x. J. Appl. Phys. 66 (1989) 5958-5961.

DOI: 10.1063/1.343623

Google Scholar

[7] S. Mollah, B. Biswas, S. Haldar, A.K. Ghosh, Carrier concentration induced transformations, and existence of pseudogap in NdBa2Cu3O7-δ. Phys. C Supercond. It is Appl. 539 (2017) 40-43.

DOI: 10.1016/j.physc.2017.06.006

Google Scholar

[8] Y. Xin, Z.Z. Sheng, Study on Zn‐, Cd‐, or Hg‐addition into TlBaCuO. J. Appl. Phys. 68 (1990) 5289-5292.

DOI: 10.1063/1.347020

Google Scholar

[9] F. Licci, A. Gauzzi, M. Marezio, G.P. Radaelli, R. Masini, C. Chaillout-Bougerol, Structural, and electronic effects of Sr substitution for Ba in Y(Ba1 − xSrx)2Cu3Ow at varying w. Phys. Rev. B 58 (1998) 15208-15217.

DOI: 10.1142/s0217979299000801

Google Scholar

[10] E.H. Sujiono, Muharram, 2017. Nd1(Fe)xBa2-xCu3Oy Metal Oxide Compound and Its Fabrication Method, Patent No. P00200800471 (in Indonesia).

Google Scholar

[11] W. Bieger, U. Wiesner, G. Krabbes, P. Schatzle, A. Bauer, P. Verges, Zelenina, Melt Texturing, and Properties Control of Nd1+yBa2-yCu3Ox Bulk Materials. J. Low Temp. Phys. 105 (1996) 1445-1450.

DOI: 10.1007/bf00753903

Google Scholar

[12] V.V. Petrykin, E.A. Goodilin, J. Hester, E.A. Trofimenko, M. Kakihana, N.N. Oleynikov, Y.D. Tretyakov, Structural disorder, and superconductivity suppression in NdBa2Cu3Oz (z∼7). Phys. C Supercond. 340 (2000) 16-32.

DOI: 10.1016/s0921-4534(00)00368-3

Google Scholar

[13] N. A. Humairah, D. Sartika, Muris, E. H. Sujiono, Effect of Molar Ratio on Crystal Structure and Surface Morphology of Nd(Fe)xBa2-xCu3O7 Oxide Alloy by Solid-State Reaction Method. IOP Conf. Ser.: Mater. Sci. Eng. 367 (2018) 012047.

DOI: 10.1088/1757-899x/367/1/012047

Google Scholar

[14] D.D. Athayde, D.F. Souza, A.M.A. Silva, D. Vasconcelos, E.H.M. Nunes, J.C. Diniz da Costa, W.L. Vasconcelos, Review of perovskite ceramic synthesis and membrane preparation methods. Ceram. Int. 42 (2016) 6555–6571.

DOI: 10.1016/j.ceramint.2016.01.130

Google Scholar

[15] E.H. Sujiono, A.C.M. Said, M.Y. Dahlan, R.A. Imran, S. Samnur, Refinement Analysis using the Rietveld Method of Nd1.2Fe1O3 Oxide Material Synthesized by Solid-State Reaction. J. Nano- Electron. Phys. 10 (2018) 02034-1-02034–4.

DOI: 10.21272/jnep.10(2).02034

Google Scholar

[16] E.H. Sujiono, A. K. Khatimah, A. N. Hasanah, N. F. Mahendi, M. Y. Dahlan, N. A. Humairah, A. Irhamsyah, Nd(Fe)0.3Ba1.7Cu3O7-δ Oxide Material Crystal Structure and Morphological Analysis. Materials Today: Proceedings 13 (2019) 264-269.

DOI: 10.1016/j.matpr.2019.03.225

Google Scholar

[17] E.H. Kisi, Rietveld analysis of powder diffraction patterns. Mater. Forum 18 (1994) 135-155.

Google Scholar

[18] G. Will, Powder Diffraction: The Rietveld Method and the Two-Stage Method, Springer, (2006).

Google Scholar