[1]
E. H. Sujiono, P. Arifin, M. Barmawi, YBa2Cu3O7−δ thin films deposited by a vertical MOCVD reactor. Mater. Chem. Phys. 73 (2002) 47-50.
DOI: 10.1016/s0254-0584(01)00351-0
Google Scholar
[2]
E. H. Sujiono, R. A. Sani, T. Saragih, P. Arifin, M. Barmawi, YBa2Cu3O7—δ Thin Films Deposited by MOCVD Vertical Reactor with a Flow Guide. Physica Status Solidi (A) Applied Research. 187 (2001) 471-479.
DOI: 10.1002/1521-396x(200110)187:2<471::aid-pssa471>3.0.co;2-m
Google Scholar
[3]
M. Nakamura, Fabrication of NdBa2Cu3O7 single crystals by the top-seeded solution-growth method in 1%, 21%, and 100% oxygen partial pressure atmosphere. Phys. C: Superconductivity. 260 (1996) 297-304.
DOI: 10.1016/0921-4534(96)00138-4
Google Scholar
[4]
H. Shaked, Structural, and superconducting properties of oxygen-deficient NdBa2Cu3O7-d. Phys. Rev. B: Condens. Matter. 41 (1990) 4173-4180.
Google Scholar
[5]
M. Nakamura, M. Kambara, T. Umeda, Y. Shiohara, Effect of oxygen partial pressure on the neodymium solubility in BaCuO solvent. Phys. C Supercond. 266 (1996) 178-182.
DOI: 10.1016/0921-4534(96)00311-5
Google Scholar
[6]
F. Parmigiani, G. Samoggia, C. Calandra, F. Manghi, Surface stoichiometry, and valence electronic structure of YBa2Cu3O7− x. J. Appl. Phys. 66 (1989) 5958-5961.
DOI: 10.1063/1.343623
Google Scholar
[7]
S. Mollah, B. Biswas, S. Haldar, A.K. Ghosh, Carrier concentration induced transformations, and existence of pseudogap in NdBa2Cu3O7-δ. Phys. C Supercond. It is Appl. 539 (2017) 40-43.
DOI: 10.1016/j.physc.2017.06.006
Google Scholar
[8]
Y. Xin, Z.Z. Sheng, Study on Zn‐, Cd‐, or Hg‐addition into TlBaCuO. J. Appl. Phys. 68 (1990) 5289-5292.
DOI: 10.1063/1.347020
Google Scholar
[9]
F. Licci, A. Gauzzi, M. Marezio, G.P. Radaelli, R. Masini, C. Chaillout-Bougerol, Structural, and electronic effects of Sr substitution for Ba in Y(Ba1 − xSrx)2Cu3Ow at varying w. Phys. Rev. B 58 (1998) 15208-15217.
DOI: 10.1142/s0217979299000801
Google Scholar
[10]
E.H. Sujiono, Muharram, 2017. Nd1(Fe)xBa2-xCu3Oy Metal Oxide Compound and Its Fabrication Method, Patent No. P00200800471 (in Indonesia).
Google Scholar
[11]
W. Bieger, U. Wiesner, G. Krabbes, P. Schatzle, A. Bauer, P. Verges, Zelenina, Melt Texturing, and Properties Control of Nd1+yBa2-yCu3Ox Bulk Materials. J. Low Temp. Phys. 105 (1996) 1445-1450.
DOI: 10.1007/bf00753903
Google Scholar
[12]
V.V. Petrykin, E.A. Goodilin, J. Hester, E.A. Trofimenko, M. Kakihana, N.N. Oleynikov, Y.D. Tretyakov, Structural disorder, and superconductivity suppression in NdBa2Cu3Oz (z∼7). Phys. C Supercond. 340 (2000) 16-32.
DOI: 10.1016/s0921-4534(00)00368-3
Google Scholar
[13]
N. A. Humairah, D. Sartika, Muris, E. H. Sujiono, Effect of Molar Ratio on Crystal Structure and Surface Morphology of Nd(Fe)xBa2-xCu3O7 Oxide Alloy by Solid-State Reaction Method. IOP Conf. Ser.: Mater. Sci. Eng. 367 (2018) 012047.
DOI: 10.1088/1757-899x/367/1/012047
Google Scholar
[14]
D.D. Athayde, D.F. Souza, A.M.A. Silva, D. Vasconcelos, E.H.M. Nunes, J.C. Diniz da Costa, W.L. Vasconcelos, Review of perovskite ceramic synthesis and membrane preparation methods. Ceram. Int. 42 (2016) 6555–6571.
DOI: 10.1016/j.ceramint.2016.01.130
Google Scholar
[15]
E.H. Sujiono, A.C.M. Said, M.Y. Dahlan, R.A. Imran, S. Samnur, Refinement Analysis using the Rietveld Method of Nd1.2Fe1O3 Oxide Material Synthesized by Solid-State Reaction. J. Nano- Electron. Phys. 10 (2018) 02034-1-02034–4.
DOI: 10.21272/jnep.10(2).02034
Google Scholar
[16]
E.H. Sujiono, A. K. Khatimah, A. N. Hasanah, N. F. Mahendi, M. Y. Dahlan, N. A. Humairah, A. Irhamsyah, Nd(Fe)0.3Ba1.7Cu3O7-δ Oxide Material Crystal Structure and Morphological Analysis. Materials Today: Proceedings 13 (2019) 264-269.
DOI: 10.1016/j.matpr.2019.03.225
Google Scholar
[17]
E.H. Kisi, Rietveld analysis of powder diffraction patterns. Mater. Forum 18 (1994) 135-155.
Google Scholar
[18]
G. Will, Powder Diffraction: The Rietveld Method and the Two-Stage Method, Springer, (2006).
Google Scholar