Structural Change and Magnetic Properties of Mechanically Alloyed Spinel Ferrite CoFe2O4

Article Preview

Abstract:

Magnetic property studies and the crystallite structures evolution of spinel ferrite CoFe2O4 particles are reported in this paper. The ferrite was prepared through mechanical milling of all alloy precursors and sintered at various temperatures of 800, 900, 1000, and 1100 °C to promote the crystalline structure. X-ray diffraction (XRD) and Williamson-Hall plot were used to calculate the mean crystallite size and microstrain. Changes in the microstructure and crystallite sizes were occurring due to sintering treatments. It is found that the remanence (Mr) and saturation magnetization (Ms) increase with increasing sintering temperature, but a decrease occurred only at the temperature of 1100 °C. The optimum magnetic properties were obtained in a sample sintered at 1000 °C with a value of Mr = 36.00 emu/g and Ms = 74.05 emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-116

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tatarchuk, M. Bououdina, J. J. Vijaya, and L. J. Kennedy, Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications, in: O. Fesenko, L. Yatsenko (eds.), Nanophysics, Nanomaterials, Interface Studies, and Applications, 2017, p.305–325.

DOI: 10.1007/978-3-319-56422-7_22

Google Scholar

[2] N. Hosni, K. Zehani, T. Bartoli, L. Bessais, and H. Maghraoui-meherzi, Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the co-precipitation process, J. Alloys Compd. 694 (2017) 1295–1301.

DOI: 10.1016/j.jallcom.2016.09.252

Google Scholar

[3] H.L. Andersen, Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles, Nanoscale 00 (2018) 1-17.

Google Scholar

[4] P. C. Dorsey et al. CoFe2O4 thin films grown on (100) MgO substrates using pulsed laser deposition, J. Allpied Phys. 6338 (2014) 2012–(2015).

DOI: 10.1063/1.361991

Google Scholar

[5] E. Manova et al. Mechano-Synthesis, Characterization, and Magnetic Properties of Nanoparticles of Cobalt Ferrite, CoFe2O4, Chem. Mater. 16 (2004) 5689–5696.

DOI: 10.1021/cm049189u

Google Scholar

[6] Y. Liu et al. Dependence of magnetic properties on crystallite size of CoFe2O4 nanoparticles synthesised by auto- combustion method, J. Exp. Nanosci. 4 (2009) 159-168.

Google Scholar

[7] T. Prabhakaran, R. V Mangalaraja, and J. C. Denardin, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles, J. Alloys Compd. 716 (2017) 171-183.

DOI: 10.1016/j.jallcom.2017.05.048

Google Scholar

[8] O. Cofe, S. Moosavi, S. Zakaria, C. H. Chia, S. Gan, and N.A. Azahari, Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals, Ceram. Int. (2017) 1-6.

DOI: 10.1016/j.ceramint.2017.03.110

Google Scholar

[9] K. S. Rao, G. Choudary, K. H. Rao, and C. Sujatha, Structural and Magnetic properties of Ultrafine CoFe2O4 Nanoparticles, Procedia Mater. Sci. 10 (2015) 19–27.

DOI: 10.1016/j.mspro.2015.06.019

Google Scholar

[10] N. Hanh, O. K. Quy, N. P. Thuy, L. D. Tung, and L. Spinu, Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties, Phys. B. 327 (2003) 382–384.

DOI: 10.1016/s0921-4526(02)01750-7

Google Scholar

[11] P. Laokul, S. Arthan, S. Maensiri, and E. Swatsitang, Magnetic and Optical Properties of CoFe2O4 Nanoparticles Synthesized by Reverse Micelle Microemulsion Method, J. Supercon Nov Magn. (2015) 1-7.

DOI: 10.1007/s10948-015-3068-8

Google Scholar

[12] S. Filipovi et al. Advantages of Combined Sintering Compared to Conventional Sintering of Mechanically Activated Magnesium Titanate, Sci. Sinter. 46 (2014) 283–290.

DOI: 10.2298/sos1403283f

Google Scholar

[13] A. Goldman, Modern Ferrite Technology, Second Ed. Pittsburgh, PA, USA: Springer US, (2006).

Google Scholar

[14] C. Clausell and A. Barba, Processing–microstructure–properties relationship in a CuNiZn ferrite, Boletín la Soc. Española Cerámica y Vidr. (2017) 1–11.

DOI: 10.1016/j.bsecv.2017.09.002

Google Scholar

[15] M.A. Bhuiyan, Effect of sintering temperature on microstructure and magnetic properties of NiFe2O4 prepared from nano size powder of NiO and Fe2O3, J. Bangladesh Acad. Sci. 34 (2010) 189–195.

Google Scholar

[16] R. Mohd, Z. Othaman, A. A. Ati, and R. Hussin, The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles, Mater. Sci. Forum. 846 (2016) 352–357.

DOI: 10.4028/www.scientific.net/msf.846.352

Google Scholar

[17] S. Kumar, V. D. Mote, R. Prakash, and V. Kumar, X-ray Analysis of α-Al2O3 Particles by Williamson-Hall Methods, Mater. Focus 5 (2016) 545–549.

DOI: 10.1166/mat.2016.1345

Google Scholar

[18] S. Bawa, M. Hashim, W. Daud, W. Yusoff, and Z. Abbas, X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering, Appl. Surf. Sci. 256 (2010) 3122–3127.

DOI: 10.1016/j.apsusc.2009.11.084

Google Scholar

[19] P. C. R. Varma, R. Sekhar, D. Banerjee, M. Raama, K. G. Suresh, and A. K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study, J. Alloys Compd. 453 (2008) 298–303.

DOI: 10.1016/j.jallcom.2006.11.058

Google Scholar

[20] J. Zhang, Y. Zhang, K. Xu, and V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals, Solid State Commun. 139 (2006) 87–91.

DOI: 10.1016/j.ssc.2006.05.026

Google Scholar

[21] M. G. N. C. Suryanarayana, X-Ray Diffraction A Practical Approach Washington: Plenum Publishing Corporation, (1998).

Google Scholar

[22] A. K. Zak, W. H. A. Majid, M. E. Abrishami, and R. Youse, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size e strain plot methods, Solid State Sci. 13 (2011) 251–256.

DOI: 10.1016/j.solidstatesciences.2010.11.024

Google Scholar

[23] A. B. Kulkarni and S. N. Mathad, Synthesis and Structural Analysis of Co–Zn–Cd Ferrite by Williamson – Hall and Size – Strain Plot Methods, Int. J. Self-Propagating High-Temperature Synth. 27 (2018) 37–43.

DOI: 10.3103/s106138621801003x

Google Scholar

[24] S. D. Bhame and P. A. Joy, Effect of Sintering Conditions and Microstructure on the Magnetostrictive Properties of Cobalt Ferrite, J. Am. Ceram. Soc. 1980 (2008) 1976–(1980).

DOI: 10.1111/j.1551-2916.2008.02367.x

Google Scholar

[25] I. K. R.S. Yadav, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method, Adv. Nat. Sci. Nanosiences Nanotechnol. 8 (2017) 1-15.

DOI: 10.1088/2043-6254/aa853a

Google Scholar

[26] Y. Liu, F. Min, T. Qiu, J. Zhu, and M. Zhang, Effect of the grain size on magnetic properties of nanocrystalline CoFe2O4 ferrite, Adv. Mater. Res. Vols. 310 (2011) 685–688.

Google Scholar

[27] E. F. Kneller and F. E. Luborsky, Particle Size Dependence of Coercivity and Remanence of Single Domain Particles, J. Allpied Phys. 656 (1963) 1-4.

DOI: 10.1063/1.1729324

Google Scholar

[28] J. S. Lee, J. M. Cha, H. Y. Yoon, J. Lee, and Y. K. Kim, Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Nat. Publ. Gr. (2015) 1–7.

DOI: 10.1038/srep12135

Google Scholar