[1]
T. Tatarchuk, M. Bououdina, J. J. Vijaya, and L. J. Kennedy, Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications, in: O. Fesenko, L. Yatsenko (eds.), Nanophysics, Nanomaterials, Interface Studies, and Applications, 2017, p.305–325.
DOI: 10.1007/978-3-319-56422-7_22
Google Scholar
[2]
N. Hosni, K. Zehani, T. Bartoli, L. Bessais, and H. Maghraoui-meherzi, Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the co-precipitation process, J. Alloys Compd. 694 (2017) 1295–1301.
DOI: 10.1016/j.jallcom.2016.09.252
Google Scholar
[3]
H.L. Andersen, Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles, Nanoscale 00 (2018) 1-17.
Google Scholar
[4]
P. C. Dorsey et al. CoFe2O4 thin films grown on (100) MgO substrates using pulsed laser deposition, J. Allpied Phys. 6338 (2014) 2012–(2015).
DOI: 10.1063/1.361991
Google Scholar
[5]
E. Manova et al. Mechano-Synthesis, Characterization, and Magnetic Properties of Nanoparticles of Cobalt Ferrite, CoFe2O4, Chem. Mater. 16 (2004) 5689–5696.
DOI: 10.1021/cm049189u
Google Scholar
[6]
Y. Liu et al. Dependence of magnetic properties on crystallite size of CoFe2O4 nanoparticles synthesised by auto- combustion method, J. Exp. Nanosci. 4 (2009) 159-168.
Google Scholar
[7]
T. Prabhakaran, R. V Mangalaraja, and J. C. Denardin, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles, J. Alloys Compd. 716 (2017) 171-183.
DOI: 10.1016/j.jallcom.2017.05.048
Google Scholar
[8]
O. Cofe, S. Moosavi, S. Zakaria, C. H. Chia, S. Gan, and N.A. Azahari, Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals, Ceram. Int. (2017) 1-6.
DOI: 10.1016/j.ceramint.2017.03.110
Google Scholar
[9]
K. S. Rao, G. Choudary, K. H. Rao, and C. Sujatha, Structural and Magnetic properties of Ultrafine CoFe2O4 Nanoparticles, Procedia Mater. Sci. 10 (2015) 19–27.
DOI: 10.1016/j.mspro.2015.06.019
Google Scholar
[10]
N. Hanh, O. K. Quy, N. P. Thuy, L. D. Tung, and L. Spinu, Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties, Phys. B. 327 (2003) 382–384.
DOI: 10.1016/s0921-4526(02)01750-7
Google Scholar
[11]
P. Laokul, S. Arthan, S. Maensiri, and E. Swatsitang, Magnetic and Optical Properties of CoFe2O4 Nanoparticles Synthesized by Reverse Micelle Microemulsion Method, J. Supercon Nov Magn. (2015) 1-7.
DOI: 10.1007/s10948-015-3068-8
Google Scholar
[12]
S. Filipovi et al. Advantages of Combined Sintering Compared to Conventional Sintering of Mechanically Activated Magnesium Titanate, Sci. Sinter. 46 (2014) 283–290.
DOI: 10.2298/sos1403283f
Google Scholar
[13]
A. Goldman, Modern Ferrite Technology, Second Ed. Pittsburgh, PA, USA: Springer US, (2006).
Google Scholar
[14]
C. Clausell and A. Barba, Processing–microstructure–properties relationship in a CuNiZn ferrite, Boletín la Soc. Española Cerámica y Vidr. (2017) 1–11.
DOI: 10.1016/j.bsecv.2017.09.002
Google Scholar
[15]
M.A. Bhuiyan, Effect of sintering temperature on microstructure and magnetic properties of NiFe2O4 prepared from nano size powder of NiO and Fe2O3, J. Bangladesh Acad. Sci. 34 (2010) 189–195.
Google Scholar
[16]
R. Mohd, Z. Othaman, A. A. Ati, and R. Hussin, The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles, Mater. Sci. Forum. 846 (2016) 352–357.
DOI: 10.4028/www.scientific.net/msf.846.352
Google Scholar
[17]
S. Kumar, V. D. Mote, R. Prakash, and V. Kumar, X-ray Analysis of α-Al2O3 Particles by Williamson-Hall Methods, Mater. Focus 5 (2016) 545–549.
DOI: 10.1166/mat.2016.1345
Google Scholar
[18]
S. Bawa, M. Hashim, W. Daud, W. Yusoff, and Z. Abbas, X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering, Appl. Surf. Sci. 256 (2010) 3122–3127.
DOI: 10.1016/j.apsusc.2009.11.084
Google Scholar
[19]
P. C. R. Varma, R. Sekhar, D. Banerjee, M. Raama, K. G. Suresh, and A. K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study, J. Alloys Compd. 453 (2008) 298–303.
DOI: 10.1016/j.jallcom.2006.11.058
Google Scholar
[20]
J. Zhang, Y. Zhang, K. Xu, and V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals, Solid State Commun. 139 (2006) 87–91.
DOI: 10.1016/j.ssc.2006.05.026
Google Scholar
[21]
M. G. N. C. Suryanarayana, X-Ray Diffraction A Practical Approach Washington: Plenum Publishing Corporation, (1998).
Google Scholar
[22]
A. K. Zak, W. H. A. Majid, M. E. Abrishami, and R. Youse, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size e strain plot methods, Solid State Sci. 13 (2011) 251–256.
DOI: 10.1016/j.solidstatesciences.2010.11.024
Google Scholar
[23]
A. B. Kulkarni and S. N. Mathad, Synthesis and Structural Analysis of Co–Zn–Cd Ferrite by Williamson – Hall and Size – Strain Plot Methods, Int. J. Self-Propagating High-Temperature Synth. 27 (2018) 37–43.
DOI: 10.3103/s106138621801003x
Google Scholar
[24]
S. D. Bhame and P. A. Joy, Effect of Sintering Conditions and Microstructure on the Magnetostrictive Properties of Cobalt Ferrite, J. Am. Ceram. Soc. 1980 (2008) 1976–(1980).
DOI: 10.1111/j.1551-2916.2008.02367.x
Google Scholar
[25]
I. K. R.S. Yadav, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method, Adv. Nat. Sci. Nanosiences Nanotechnol. 8 (2017) 1-15.
DOI: 10.1088/2043-6254/aa853a
Google Scholar
[26]
Y. Liu, F. Min, T. Qiu, J. Zhu, and M. Zhang, Effect of the grain size on magnetic properties of nanocrystalline CoFe2O4 ferrite, Adv. Mater. Res. Vols. 310 (2011) 685–688.
Google Scholar
[27]
E. F. Kneller and F. E. Luborsky, Particle Size Dependence of Coercivity and Remanence of Single Domain Particles, J. Allpied Phys. 656 (1963) 1-4.
DOI: 10.1063/1.1729324
Google Scholar
[28]
J. S. Lee, J. M. Cha, H. Y. Yoon, J. Lee, and Y. K. Kim, Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Nat. Publ. Gr. (2015) 1–7.
DOI: 10.1038/srep12135
Google Scholar