Effect of Sintering in Nanosized SrMnO3 Perovskite by Sol-Gel Method

Article Preview

Abstract:

Nanosized particles SrMnO3 perovskite was prepared by using sol gel method. The sintering temperature was modified to 700, 1000 and 1200 °C within 6 hours. The effect of sintering in nanosized particles and structural were carefully investigated by using X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). All the synthesized particles show orthorhombic structure with progression from amorphous phase on lower temperature to single phase on higher temperature of sintering. The crystallite size tends to be constant while the particle size is adjusted. The SrMnO3 grain size also modified to larger as the sintering temperature increase indicating that structure and behavior of the particles could be improved by modified sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-88

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.D. Zhang, T.L. Phan, D.S. Yang, S.C. Yu, Curr. Appl. Phys. 12 (2012) 803.

Google Scholar

[2] B. Goodenough, A. Wold, R.J. Arnitt, Phys. Rev. 124 (1961) 373.

Google Scholar

[3] P. AJoy, Y.B. Khollam, S.K. Date, Phys. Rev. B. 62 (2000) 8608.

Google Scholar

[4] D. Ginting, D. Nanto, Y.D. Zhang, S.C. Yu, T.L. Phan, Physica B 412 (2013) 17.

Google Scholar

[5] E. Brück, J. Phys. D 38 (2005) R381.

Google Scholar

[6] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78 (1997) 1142.

Google Scholar

[7] R. Wang, R. Mahesh, and M. Itoh, Phys. Rev. B 60 (1999) 14513.

Google Scholar

[8] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344 (2001) 1.

Google Scholar

[9] Y. M. Xiong, T. Chen, G. Y. Wang, X. H. Chen, and C. L. Chen, Phys. Rev. B 70 (2004) 094407.

Google Scholar

[10] H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Science 270 (1995) 961.

DOI: 10.1126/science.270.5238.961

Google Scholar

[11] D. Ginting, D. Nanto, S.C. Yu, and T. L. Phan, IEEE Trans. Magn. 50 (2014) 1.

Google Scholar

[12] S. Xu, Q. Shi, J. Ju, Z. Han, B. Qian, D. wang, P. Zhang, X. Jiang, and Y. Du, J. Nanosci. Nanotechnol. 16 (2016) (2042).

Google Scholar

[13] D. Nanto, Z. Peng, Y. -Y. Song, S. -C. Yu, S. Telegin, L. Elochina, and A. Telegin, IEEE Trans. Magn. 48 (2012) 3995.

DOI: 10.1109/tmag.2012.2208183

Google Scholar

[14] Dutta, N. Gayathri, and R. Ranganathan, Phys. Rev. B 68 (2003) 054432.

Google Scholar

[15] D. Handoko, S.-H. Lee, N. A. Kalanda, S.-C. Yu, S. K. Oh1 D.-H. Kim, D.S. Yang, A.V. Petrov, M.V. Yarmolich, and S.E. Demyanov, IEEE Trans. Magn. 51 (2015) 2600603.

Google Scholar

[16] Z. B. Guo, J. R. Zhang, H. Huang, W. P. Ding, and Y. W. Du, Appl. Phys. Lett. 70, (1997) 904.

Google Scholar