Synthesis and Magnetic Characterization of La2-xSrxCuO4 Nanoparticles

Article Preview

Abstract:

Non-doped and strontium-doped lanthanum cuprates (La2CuO4 (LCO) and La1.85Sr0.15CuO4 (LSCO15)) in nano-sized particles were synthesized by the chemically dissolved technique employing HNO3 as the dissolving agent. The structural and magnetic properties were investigated by using an x-ray diffraction (XRD) apparatus and a superconducting quantum interference device (SQUID) magnetometer, respectively. The XRD patterns of LCO and LSCO15 show the formation of the single phase without impurities after the calcinations in air at 1100°C for 15 h and the post-annealing in oxygen at 800 °C for 24 h. The average crystallite sizes of LCO and LSCO15 samples were in a range of around 100 nm confirming nano-sized particles. The LCO and LSCO15 nanoparticles exhibit superconductivity at the superconducting (SC) transition temperature, Tc, of 23 K and 38 K, respectively. The magnetization curve measurements have revealed that both samples show the appearance of ferro- and dia-magnetic behavior at room temperature and the appearance of superconductivity at low temperatures. This result may indicate the coexistence of ferromagnetism and superconductivity below Tc in the nano-sized cuprates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-63

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux, and Z.-X. Shen, Nature Physics 10, 483 (2014).

Google Scholar

[2] Shipra, A. Gomathi, A. Sundaresan, and C. N. R. Rao, Solid State Communications 142, 685 (2007).

DOI: 10.1016/j.ssc.2007.04.041

Google Scholar

[3] B.-R. Zhao et al., The European Physical Journal B - Condensed Matter and Complex Systems 25, 19 (2002).

Google Scholar

[4] Y. Koike, T. Adachi, Y. Tanabe, K. Omori, T. Noji, and H. Sato, Journal of Physics: Conference Series 108, 012003 (2008).

Google Scholar

[5] T. Tajiri, S. Hohdai, K. Hamamoto, H. Deguchi, M. Mito, and A. Kohno, Journal of Physics: Conference Series 400, 032095 (2012).

DOI: 10.1088/1742-6596/400/3/032095

Google Scholar

[6] J. E. Sonier, C. V. Kaiser, V. Pacradouni, S. A. Sabok-Sayr, C. Cochrane, D. E. MacLaughlin, S. Komiya, and N. E. Hussey, Proceedings of the National Academy of Sciences 107, 17131 (2010).

DOI: 10.1073/pnas.1007079107

Google Scholar

[7] Z. Zhu, D. Gao, C. Dong, G. Yang, J. Zhang, J. Zhang, Z. Shi, H. Gao, H. Luo, D. Xue, Physical Chemistry Chemical Physics 14, 3859 (2012).

DOI: 10.1039/c2cp23046a

Google Scholar

[8] K. Oka and H. Unoki, Japanese Journal of Applied Physics 26, L1590 (1987).

Google Scholar

[9] L. Lutterotti and P. Scardi, Journal of Applied Crystallography 23, 246 (1990).

Google Scholar

[10] H. Rietveld, Journal of Applied Crystallography 2, 65 (1969).

Google Scholar

[11] E. Krüger, Journal of Superconductivity 18, 433 (2005).

Google Scholar

[12] M. Onoda, S. Shamoto, M. Sato, and S. Hosoya, Japanese Journal of Applied Physics 26, L363 (1987).

Google Scholar

[13] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Reviews of Modern Physics 70, 897 (1998).

Google Scholar

[14] K. Sekizawa, Y. Takano, H. Takigami, S. Tasaki, and T. Inaba, Japanese Journal of Applied Physics 26, L840 (1987).

DOI: 10.1143/jjap.26.l840

Google Scholar

[15] V. A. Alyoshin, I. P. Romanova, D. Mikhailova, S. Oswald, A. Senyshyn, and H. Ehrenberg, The Journal of Physical Chemistry A 114, 13362 (2010).

Google Scholar

[16] I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature 422, 873 (2003).

DOI: 10.1038/nature01544

Google Scholar

[17] A. Tsukada, Y. Krockenberger, M. Noda, H. Yamamoto, D. Manske, L. Alff, and M. Naito, Solid State Communications 133, 427 (2005).

DOI: 10.1016/j.ssc.2004.12.011

Google Scholar

[18] Y. Krockenberger, H. Irie, O. Matsumoto, K. Yamagami, M. Mitsuhashi, A. Tsukada, M. Naito, and H. Yamamoto, Scientific Reports 3, 2235 (2013).

DOI: 10.1038/srep02235

Google Scholar

[19] Y. Yin, H. Liu, L. Xie, T. Su, M. Teng, and X. Li, The Journal of Physical Chemistry C 117, 3028 (2013).

Google Scholar

[20] A. Sundaresan and C. N. R. Rao, Nano Today 4, 96 (2009).

Google Scholar

[21] G. Drachuck, M. Shay, G. Bazalitsky, J. Berger, and A. Keren, Physical Review B 85, 184518 (2012).

Google Scholar

[22] V. V. Mazurenko and V. I. Anisimov, Physical Review B 71, 184434 (2005).

Google Scholar

[23] H. Maletta, M. W. Shafer, T. Penney, B. L. Olson, A. M. Torressen, and R. L. Greene, Physica B+C 148, 233 (1987).

DOI: 10.1016/0378-4363(87)90197-5

Google Scholar