[1]
E. V. Gafton, G. Bulai, O.F. Caltun, S. Cervera, S. Macé, M. Trassinelli, S. Steydli and D. Vernhet, Structural and magnetic properties of zinc ferrite thin films irradiated by 90 keV neon ions, Applied Surface Science. Elsevier B.V. 379 (2016) 171–178.
DOI: 10.1016/j.apsusc.2016.04.035
Google Scholar
[2]
C. Wongyara, P. Harnkar, C. S. T. Puangpetch, K. Laohhasurayotin, A. Patil, Preparation of magnetic zinc ferrite nanoparticles and their photocatalytic performance, Key Engineering Materials. 757 (2017) 125-130.
DOI: 10.4028/www.scientific.net/kem.757.125
Google Scholar
[3]
R. Tholkappiyan, K. Vishista, Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant, Int. J. Mater. Res. 106(2) (2015) 127-136. DOI 10.3139/146.111161.
DOI: 10.3139/146.111161
Google Scholar
[4]
M. Ebrahimi, R. R. Shahraki, S. A. S. Ebrahimi, S. M. Masoudpanah, Magnetic properties of zinc ferrite nanoparticles synthesized by co-precipitation method, J. Supercond. Nov. Magn. Accepted: 16 January 2014.
DOI: 10.1007/s10948-014-2485-4
Google Scholar
[5]
S. R. Raju, Synthesis of non-stoichiometric zinc ferrite for electromagnetic wave absorber applications, Materials Science and Engineering. 224 (2017) 88–92. http://dx.doi.org/10.1016/j.mseb.2017.07.012.
DOI: 10.1016/j.mseb.2017.07.012
Google Scholar
[6]
P. M. P. Swamy, S. Basavaraja, A. Lagashetty, N. V. S. Rao, R Nijagunappa, A. Venkataraman, Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method, Bull. Mater. Sci. 34(7) (2011) 1325–1330.
DOI: 10.1007/s12034-011-0323-x
Google Scholar
[7]
M. Qin, Q. Shuaia, G. Wu, B. Zheng, Z. Wange, H. Wu, Zinc ferrite composite material with controllable morphology and its applications, Materials Science & Engineering B. 224 (2017) 125–138.
DOI: 10.1016/j.mseb.2017.07.016
Google Scholar
[8]
R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite, Materials Letters. 215 (2018) 229–232.
DOI: 10.1016/j.matlet.2017.12.108
Google Scholar
[9]
X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber, Materials Letters. 124(2014) 126–128. http://dx.doi.org/10.1016/j.matlet.2014.03.049.
DOI: 10.1016/j.matlet.2014.03.049
Google Scholar
[10]
P. Smitha, I. Singh, M. Najim, R. Panwar, D. Singh, V. Agarwala, G. D. Varma, Development of thin broad band radar absorbing materials using nanostructured spinel ferrites, J. Mater. Sci.: Mater Electron. (2016) 1-7.
DOI: 10.1007/s10854-016-4760-6
Google Scholar
[11]
N. Sharma, P. Aghamkarn, S. Kumar, M. Bansal, Anju, R.P. Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites, Journal of Magnetism and Magnetic Materials. 369 (2014) 162–167. http://dx.doi.org/10.1016/j.jmmm.2014.05.042.
DOI: 10.1016/j.jmmm.2014.05.042
Google Scholar
[12]
M. M. L. Sonia, S. Blessi, S. Pauline, Role of lanthanum substitution on the structural and magnetic properties of nanocrystalline nickel ferrites, International Journal of Advance Research in Science and Engineering (IJARSE). 3(7) (2014) 360-367.
Google Scholar
[13]
Yunasfi, Mashadi and A. Mulyawan, Magnetic and microwave absorption properties of neodymiun doped nickel ferrite using milling technique, Jurnal Teknologi (Sciences & Engineering), UTM Malaysia. 81(4) (2019) 21–25.DOI: https://doi.org/10.11113/jt.v81.11045.
DOI: 10.11113/jt.v81.11045
Google Scholar
[14]
Yunasfi, Wisnu A. A., Mashadi, and Ade Mulyawan, Synthesis of NiLaxFe(2-x)O4 system as microwave absorber materials by milling technique. Journal of Electronic Materials. in Submitted.
DOI: 10.1007/s11664-020-08489-w
Google Scholar
[15]
Yunasfi, Mashadi and A. Mulyawan, Synthesis of Ni(1.5-x)LaxFe1.5O4 as microwave absorber material by sol gel methods. Indonesian Journal of Materials Science. 19(2017) 19–24.
DOI: 10.17146/jsmi.2017.19.1.4131
Google Scholar
[16]
R. Talebi, M. Nasiri, S. Rahnamaeiyan, Synthesis, characterization and optical properties of lanthanum doped zinc ferrite nanoparticles prepared by sol–gel method, J. Mater. Sci.: Mater Electron. (2015) 1-7. DOI 10.1007/s10854-015-3917-z.
DOI: 10.1007/s10854-015-3917-z
Google Scholar
[17]
B. H. Toby, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography. 34 (2001) 210. https://doi.org/10.1107/S0021889801002242.
DOI: 10.1107/s0021889801002242
Google Scholar
[18]
J. R. T. Olsson, S. J. Savage, U. W. Gedde and U. Klement, Microwave absorbing properties of ferrite-based nanocomposites. Proc. of SPIE. 6526 (2017) 65261P-1.
Google Scholar
[19]
L. G. Min, W. L. Cheng and X. Yao, Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties, Chin. Phys. B. 23(8) (2014) 088105(1-7).
DOI: 10.1088/1674-1056/23/8/088105
Google Scholar
[20]
Marki Microwave. Return Loss to VSWR Conversion Table, 215 Vineyard Court, Morgan Hill, CA 95037 (2017). www.markimicrowave.com.
Google Scholar