The Effect of x Mole Ratio on Crystal Structure and Characteristic of Microwave Absorption of ZnLaxFe(2-x)O4 System

Article Preview

Abstract:

The effect of x mole ratio on crystal structure and characteristic of microwave absorption of ZnLaxFe(2-x)O4 system (x = 0.0; 0.01and 0.02) synthesized by solid state reaction method has been studied. The series of ZnLaxFe(2-x)O4 samples were prepared using ZnO (99.99%) and Fe2O3 (99.99 %) powders (Merck product), while La2O3 (local production) powders in mole ratio. The identification result of the XRD shows that all of samples are single phase in this stage, it has cubic spinel structure with space group F d-3 m. The SEM image of ZnLaxFe(2-x)O4 samples appear that the increase of mole ratio, the particle size of the compound powder rapidly becomes bigger, homogeneous and not uniform powder with spherical in shape and particle size of 200-500 nm. The results of the VNA characterization shows that the increasing of mole ratio (x = 0.0; 0.01 and 0.02) will enhance the ability to absorb microwave from 90.35% upto 97.69%. Thus. the composition of x=0.02 (ZnLa0.02Fe1.98O4) possess to be the best composition for microwave absorbing material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. V. Gafton, G. Bulai, O.F. Caltun, S. Cervera, S. Macé, M. Trassinelli, S. Steydli and D. Vernhet, Structural and magnetic properties of zinc ferrite thin films irradiated by 90 keV neon ions, Applied Surface Science. Elsevier B.V. 379 (2016) 171–178.

DOI: 10.1016/j.apsusc.2016.04.035

Google Scholar

[2] C. Wongyara, P. Harnkar, C. S. T. Puangpetch, K. Laohhasurayotin, A. Patil, Preparation of magnetic zinc ferrite nanoparticles and their photocatalytic performance, Key Engineering Materials. 757 (2017) 125-130.

DOI: 10.4028/www.scientific.net/kem.757.125

Google Scholar

[3] R. Tholkappiyan, K. Vishista, Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant, Int. J. Mater. Res. 106(2) (2015) 127-136. DOI 10.3139/146.111161.

DOI: 10.3139/146.111161

Google Scholar

[4] M. Ebrahimi, R. R. Shahraki, S. A. S. Ebrahimi, S. M. Masoudpanah, Magnetic properties of zinc ferrite nanoparticles synthesized by co-precipitation method, J. Supercond. Nov. Magn. Accepted: 16 January 2014.

DOI: 10.1007/s10948-014-2485-4

Google Scholar

[5] S. R. Raju, Synthesis of non-stoichiometric zinc ferrite for electromagnetic wave absorber applications, Materials Science and Engineering. 224 (2017) 88–92. http://dx.doi.org/10.1016/j.mseb.2017.07.012.

DOI: 10.1016/j.mseb.2017.07.012

Google Scholar

[6] P. M. P. Swamy, S. Basavaraja, A. Lagashetty, N. V. S. Rao, R Nijagunappa, A. Venkataraman, Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method, Bull. Mater. Sci. 34(7) (2011) 1325–1330.

DOI: 10.1007/s12034-011-0323-x

Google Scholar

[7] M. Qin, Q. Shuaia, G. Wu, B. Zheng, Z. Wange, H. Wu, Zinc ferrite composite material with controllable morphology and its applications, Materials Science & Engineering B. 224 (2017) 125–138.

DOI: 10.1016/j.mseb.2017.07.016

Google Scholar

[8] R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite, Materials Letters. 215 (2018) 229–232.

DOI: 10.1016/j.matlet.2017.12.108

Google Scholar

[9] X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber, Materials Letters. 124(2014) 126–128. http://dx.doi.org/10.1016/j.matlet.2014.03.049.

DOI: 10.1016/j.matlet.2014.03.049

Google Scholar

[10] P. Smitha, I. Singh, M. Najim, R. Panwar, D. Singh, V. Agarwala, G. D. Varma, Development of thin broad band radar absorbing materials using nanostructured spinel ferrites, J. Mater. Sci.: Mater Electron. (2016) 1-7.

DOI: 10.1007/s10854-016-4760-6

Google Scholar

[11] N. Sharma, P. Aghamkarn, S. Kumar, M. Bansal, Anju, R.P. Tondon, Study of structural and magnetic properties of Nd doped zinc ferrites, Journal of Magnetism and Magnetic Materials. 369 (2014) 162–167. http://dx.doi.org/10.1016/j.jmmm.2014.05.042.

DOI: 10.1016/j.jmmm.2014.05.042

Google Scholar

[12] M. M. L. Sonia, S. Blessi, S. Pauline, Role of lanthanum substitution on the structural and magnetic properties of nanocrystalline nickel ferrites, International Journal of Advance Research in Science and Engineering (IJARSE). 3(7) (2014) 360-367.

Google Scholar

[13] Yunasfi, Mashadi and A. Mulyawan, Magnetic and microwave absorption properties of neodymiun doped nickel ferrite using milling technique, Jurnal Teknologi (Sciences & Engineering), UTM Malaysia. 81(4) (2019) 21–25.DOI: https://doi.org/10.11113/jt.v81.11045.

DOI: 10.11113/jt.v81.11045

Google Scholar

[14] Yunasfi, Wisnu A. A., Mashadi, and Ade Mulyawan, Synthesis of NiLaxFe(2-x)O4 system as microwave absorber materials by milling technique. Journal of Electronic Materials. in Submitted.

DOI: 10.1007/s11664-020-08489-w

Google Scholar

[15] Yunasfi, Mashadi and A. Mulyawan, Synthesis of Ni(1.5-x)LaxFe1.5O4 as microwave absorber material by sol gel methods. Indonesian Journal of Materials Science. 19(2017) 19–24.

DOI: 10.17146/jsmi.2017.19.1.4131

Google Scholar

[16] R. Talebi, M. Nasiri, S. Rahnamaeiyan, Synthesis, characterization and optical properties of lanthanum doped zinc ferrite nanoparticles prepared by sol–gel method, J. Mater. Sci.: Mater Electron. (2015) 1-7. DOI 10.1007/s10854-015-3917-z.

DOI: 10.1007/s10854-015-3917-z

Google Scholar

[17] B. H. Toby, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography. 34 (2001) 210. https://doi.org/10.1107/S0021889801002242.

DOI: 10.1107/s0021889801002242

Google Scholar

[18] J. R. T. Olsson, S. J. Savage, U. W. Gedde and U. Klement, Microwave absorbing properties of ferrite-based nanocomposites. Proc. of SPIE. 6526 (2017) 65261P-1.

Google Scholar

[19] L. G. Min, W. L. Cheng and X. Yao, Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties, Chin. Phys. B. 23(8) (2014) 088105(1-7).

DOI: 10.1088/1674-1056/23/8/088105

Google Scholar

[20] Marki Microwave. Return Loss to VSWR Conversion Table, 215 Vineyard Court, Morgan Hill, CA 95037 (2017). www.markimicrowave.com.

Google Scholar