[1]
A. Sundaresan, C.N.R. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles, NanoToday.4(2009) 96–106. doi:https://doi.org/10.1016/j.nantod.2008.10.002.
Google Scholar
[2]
M.A. Baqiya, H. Widodo, L. Rochmawati, Darminto, T. Adachi, Y. Koike, Ferromagnetism in 2212 phase Bi-Sr-Ca-Cu-O nano-superconductors, AIP Conf. Proc. 1454 (2012) 260–263.
DOI: 10.1063/1.4730735
Google Scholar
[3]
B. Triono, P.E.D. Putra, R. Irfanita, M.A. Baqiya, Darminto, Possible Weak Ferromagnetism in Pr 2- x Ce x CuO 4 Nanocrystals at Normal State , IOP Conf. Ser. Mater. Sci. Eng. 395 (2018) 012026.
DOI: 10.1088/1757-899x/395/1/012026
Google Scholar
[4]
M.A. Baqiya, P.E.D. Putra, B. Triono, R. Irfanita, Suasmoro, Darminto, T. Kawamata, T. Noji, H. Sato, M. Kato, Y. Koike, Ce-Doping and Reduction Annealing Effects on Magnetic Properties of Pr 2- x Ce x CuO 4 Nanoparticles, J. Supercond. Nov. Magn. 32 (2018) 2165–2174.
DOI: 10.1007/s10948-018-4941-z
Google Scholar
[5]
M.A. Baqiya, P.E.D. Putra, R. Irfanita, Suasmoro, Darminto, T. Kawamata, T. Noji, H. Sato, M. Kato, Y. Koike, Enhanced Room-Temperature Ferromagnetism in Superconducting Pr2-xCexCuO4 Nanoparticles, Mater. Sci. Forum. 966 (2019) 263–268.
DOI: 10.4028/www.scientific.net/msf.966.263
Google Scholar
[6]
S. Asano, K. Ishii, D. Matsumura, T. Tsuji, T. Ina, K.M. Suzuki, M. Fujita, Ce substitution and reduction annealing effects on electronic states in Pr2−xCexCuO4 studied by Cu K-edge X-ray absorption spectroscopy, J. Phys. Soc. Japan. 87 (2018) 1–5.
DOI: 10.7566/jpsj.87.094710
Google Scholar
[7]
I. Resky, P.E.D. Putra, T. Bambang, S. Chatree, K. Krongthong, A.M. Baqiya, Darminto, Oxygen Reduction Effect on T'-Pr2-xCexCuO4 Nanopowders in the Underdoped Regime Studied by X-Ray Absorption near Edge Structure, Mater. Sci. Forum. 936 (2018) 93–97.
DOI: 10.4028/www.scientific.net/msf.936.93
Google Scholar
[8]
L. Lutterotti, Maud: A Rietveld Analysis Program Designed for the Internet and Experiment Integration, Acta Crystallogr. Sect. A - ACTA CRYSTALLOGR A. 56 (2000).
DOI: 10.1107/s0108767300021954
Google Scholar
[9]
R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori, T. Kamiyama, Rietveld analysis software for J-PARC, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 600 (2009) 94–96. doi:https://doi.org/10.1016/j.nima.2008.11.056.
DOI: 10.1016/j.nima.2008.11.056
Google Scholar
[10]
T. Uzumaki, K. Hashimoto, N. Kamehara, U. T, HashimotoÿK, KameharaÿN, Raman scattering and X-ray diffraction study in layered cuprates, Phys. C Supercond. 202 (1992) 175–187. doi:https://doi.org/10.1016/0921-4534(92)90310-9.
DOI: 10.1016/0921-4534(92)90310-9
Google Scholar
[11]
J.H. Park, Y.J. Lee, J.-S. Bae, B.-S. Kim, Y.C. Cho, C. Moriyoshi, Y. Kuroiwa, S. Lee, S.-Y. Jeong, Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM, Nanoscale Res. Lett. 10 (2015) 186.
DOI: 10.1186/s11671-015-0887-2
Google Scholar
[12]
P. Richard, G. Riou, S. Jandl, M. Poirier, P. Fournier, V. Nekvasil, M. Diviš, Role of apical oxygen in 2-1-4 electron-doped superconductors, Phys. C Supercond. Its Appl. 408–410 (2004) 830–831.
DOI: 10.1016/j.physc.2004.03.150
Google Scholar
[13]
S. Asano, K.M. Suzuki, D. Matsumura, K. Ishii, T. Ina, M. Fujita, Reduction and oxidation annealing effects on Cu K-edge XAFS for electron-doped cuprate superconductors, J. Phys. Conf. Ser. 969 (2018) 012051.
DOI: 10.1088/1742-6596/969/1/012051
Google Scholar
[14]
X. Ding, T. Liu, S. Ahmed, N. Bao, J. Ding, J. Yi, Enhanced ferromagnetism in WS 2 via defect engineering,J.Alloys Compd. 772 (2019) 740–744.
DOI: 10.1016/j.jallcom.2018.09.088
Google Scholar