[1]
T. Kishi, Materials Outlook for Energy and Environment, New Material Science of the 21st Century towards the Solution of Energy and Environment Issues, 1st ed., National Institute for Materials Science (NIMS), Japan, (2008).
Google Scholar
[2]
T. Gheno, D. Monceau, J. Zhang, D.J. Young, Carburisation of ferritic Fe–Cr alloys by low carbon activity gases, Corros. Sci. 53 (2011) 2767-2777.
DOI: 10.1016/j.corsci.2011.05.013
Google Scholar
[3]
K. Kaya, S. Hayashi, S. Ukai, High-temperature Oxidation Behavior of 9Cr Ferritic-steel in Carbon Dioxide, ISIJ Int. 54 (2014) 1379-1385.
DOI: 10.2355/isijinternational.54.1379
Google Scholar
[4]
B.A. Pint, J.K. Thomson, Effect of oxy-firing on corrosion rates at 600–650 °C, Mater. Corros. 65 (2013) 132-140.
DOI: 10.1002/maco.201307194
Google Scholar
[5]
P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters, A. Galerie, Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere, Oxid. Met. 81 (2014) 315-329.
DOI: 10.1007/s11085-013-9432-9
Google Scholar
[6]
F. Rouillard, G. Moine, L. Martinelli, J.C. Ruiz, Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation, Oxid. Met. 77 (2012) 27-55.
DOI: 10.1007/s11085-011-9271-5
Google Scholar
[7]
D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser, W.J. Quadakkers, Non-steady state carburisation of martensitic 9–12%Cr steels in CO2 rich gases at 550°C, Corros. Sci. 88 (2014) 161-169.
DOI: 10.1016/j.corsci.2014.07.024
Google Scholar
[8]
A. Atkinson, Transport processes during the growth of oxide films at elevated temperature, Rev. Mod. Phys. 57 (1985) 437-470.
DOI: 10.1103/revmodphys.57.437
Google Scholar
[9]
G.O. Llyod, S.R.J. Saunders, B. Kent, A. Fursey, Breakaway oxidation of Fe 10%Cr and Fe20%Cr at temperatures up to 600°C, Corros. Sci. 17 (1977) 269-299.
DOI: 10.1016/0010-938x(77)90053-1
Google Scholar
[10]
M.H. Shirani Bidabadi, Z. Yu, A. Rehman, J.G. He, C. Zhang, H. Chen, Z.-G. Yang, High-Temperature Oxidation Behavior of CrMoV, F91 and Mar-M247 Superalloys Exposed to Laboratory Air at 550 °C, Oxid. Met. 90 (2018) 401-419.
DOI: 10.1007/s11085-018-9839-4
Google Scholar
[11]
M.H. Shirani Bidabadi, Y. Zheng, A. Rehman, C. Zhang, H. Chen, P. Hou, Z.-g. Yang, Oxidation behavior and lifetime prediction of three commercial alloys used in power plants at 550 °C in CO2 environment, J. Iron Steel Res. Int. 26 (2019) 898-908.
DOI: 10.1007/s42243-019-00232-y
Google Scholar
[12]
Y. Zheng, M.H. Shirani Bidabadi, L. Yang, A. Rehman, C. Zhang, H. Chen, Z.-G. Yang, Pre-oxidation Effect on Oxidation Behavior of F91 in Carbon Dioxide at 550 °C, Oxid. Met. 90 (2018) 317-335.
DOI: 10.1007/s11085-018-9850-9
Google Scholar
[13]
H.S. Hsu, The formation of multilayer scales on pure metals, Oxid. Met. 26 (1986) 315-332.
DOI: 10.1007/bf00659339
Google Scholar
[14]
M.R. Taylor, J.M. Calvert, D.G. Lees, D.B. Meadowcroft, The mechanism of corrosion of Fe-9%Cr alloys in carbon dioxide, Oxid. Met. 14 (1980) 499.
DOI: 10.1007/bf00603476
Google Scholar
[15]
W. Christi, A. Rahmel, M. Schütze, Behavior of oxide scales on 2.25Cr-1Mo steel during thermal cycling. I. Scales formed in oxygen and air, Oxid. Met. 31 (1989) 1-34.
DOI: 10.1007/bf00665485
Google Scholar
[16]
T.C. Totemeier, H. Tian, J.A. Simpson, Effect of normalization temperature on the creep strength of modified 9Cr-1Mo steel, Metall. Mater. Trans. A, 37 (2006) 1519-1525.
DOI: 10.1007/s11661-006-0096-9
Google Scholar
[17]
Z.J. Wang, F.H. Sun, G.W. Zhao, Optimization of Cutting Force by Exponential Model in Milling Heat-Resistant Steel F91, Advanced Materials Research. 53-54 (2008) 397-402.
DOI: 10.4028/www.scientific.net/amr.53-54.397
Google Scholar
[18]
Y. Zheng, M.H. Shirani Bidabadi, G. Wang, C. Zhang, H. Chen, Z. Yang, Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550 °C, Oxid. Met. 91 (2019) 657-675.
DOI: 10.1007/s11085-019-09901-5
Google Scholar
[19]
J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corros. Sci. 48 (2006) 3428-3454.
DOI: 10.1016/j.corsci.2006.02.002
Google Scholar
[20]
N. Mu, K.Y. Jung, N.M. Yanar, G.H. Meier, F.S. Pettit, G.R. Holcomb, Water Vapor Effects on the Oxidation Behavior of Fe–Cr and Ni–Cr Alloys in Atmospheres Relevant to Oxy-fuel Combustion, Oxid. Met. 78 (2012) 221-237.
DOI: 10.1007/s11085-012-9302-x
Google Scholar