High Temperature Degradation of Thermal Oxides on AISI 304 Stainless Steels by Carbon

Article Preview

Abstract:

AISI 304 austenitic stainless steel specimens are oxidised in laboratory air at 750 °C for 48 h. They are further subjected to the reduction test in carbon at 1350 °C for 30 and 60 min. The results show that the mass gain of the oxidised AISI 304 slighter increases to be 0.08 mg cm–2 after the reduction for 30 min and is unchanged at the longer reduction period up to 60 min. The oxide on AISI 304 is deteriorated after the reduction but its morphology tends to be unchanged when the reduction period is longer from 30 to 60 min. The results then indicate the superior performance of the AISI 304 to combat the corrosion under carbon at this high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe-15.7 wt.% Cr-8.5 wt.% Mn in oxygen without and with water vapour at 700 ºC, Corros. Sci. 148 (2019) 39-47.

DOI: 10.1016/j.corsci.2018.11.023

Google Scholar

[2] V. Parry, W. Wongpromrat, L. Latu-Romain, C. Pascal, W. Chandra-ambhorn, S. Chandra ambhorn, Y. Wouters, A. Galerie, Morpho-chemical investigations and thermodynamic study of Nb-rich passive nodules grown on AISI 441 oxidized in wet atmosphere, Corros. Sci. 141 (2018) 255-263.

DOI: 10.1016/j.corsci.2018.06.036

Google Scholar

[3] S. Chandra-ambhorn, P. Saranyachot, Effect of the H2 content in shielding gas on the microstructure and oxidation resistance of Fe-15.7 wt.% Cr-8.5 wt.% Mn steel GTA welds, J. Mater. Process. Technol. 268 (2019) 18-24.

DOI: 10.1016/j.jmatprotec.2019.01.004

Google Scholar

[4] Z. Ahmad (Ed.), High Temperature Corrosion, InTech, (2016).

Google Scholar

[5] Z.-P. Wang, L. Zhang, J. Liu, Y.-F. Zhao, B. Geng, D.-H. Wang, Failure analysis of high temperature steam oxidation of T22 and T91 tubes for power station, (2004).

Google Scholar

[6] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High. Temp. 32 (2015) 22-27.

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[7] W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corros. Sci. 106 (2016) 172-178.

DOI: 10.1016/j.corsci.2016.02.002

Google Scholar

[8] S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, J. Power Sources 171 (2007) 688-695.

DOI: 10.1016/j.jpowsour.2007.06.058

Google Scholar

[9] U. Krupp, V.B. Trindade, P. Schmidt, H.-J. Christ, U. Buschmann, W. Wiechert, Oxidation mechanisms of Cr-containing steels and Ni-base alloys at high temperatures Part II: Computer-based simulation, Mater. Corros. 57 (2006) 263-268.

DOI: 10.1002/maco.200503933

Google Scholar

[10] J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, H. Chen, Oxidation behavior of stainless steel 430 and 441 at 800°C in single (air/air) and dual atmosphere (air/hydrogen) exposures, Int. J. Hydrogen Energ. 33 (2008) 1392-1398.

DOI: 10.1016/j.ijhydene.2007.12.067

Google Scholar

[11] G.Y. Lai, High-temperature corrosion and materials applications, ASM International, Materials Park, 2008, c2007.

Google Scholar

[12] A.J. Sedriks, Corrosion of stainless steels, 2nd ed., Wiley-Interscience, New York, N.Y., (1996).

Google Scholar

[13] H.S. Khatak, B. Raj, Corrosion of austenitic stainless steel ;: Mechanism, mitigation and monitoring, Woodhead Publishing Ltd, Cambridge, (2002).

Google Scholar

[14] S. Chandra-ambhorn, T. Thublaor, C. Pascal, CHAPTER 1 Thermodynamics and Kinetics of the High Temperature Oxidation of Stainless Steels, SSP 300 (2020) 1-24.

DOI: 10.4028/www.scientific.net/ssp.300.1

Google Scholar

[15] D. Chakraborty, S. Ranganathan, S.N. Sinha, Investigations on the carbothermic reduction of chromite ores, Metall. Mater. Trans. B 36 (2005) 437-444.

DOI: 10.1007/s11663-005-0034-z

Google Scholar

[16] T. Mori, J. Yang, M. Kuwabara, Mechanism of Carbothermic Reduction of Chromium Oxide, ISIJ Int. 47 (2007) 1387-1393.

DOI: 10.2355/isijinternational.47.1387

Google Scholar

[17] F. Apaydin, A. Atasoy, K. Yildiz, Effect of mechanical activation on carbothermal reduction of chromite with graphite, Can. Metall. Q. 50 (2011) 113-118.

DOI: 10.1179/000844311x12949291728014

Google Scholar

[18] Y.-l. Zhang, W.-m. Guo, Y. Liu, X.-l. Jia, Reduction mechanism of Fe2O3-Cr2O3-NiO system by carbon, J. Cent. South Univ. 23 (2016) 1318-1325.

DOI: 10.1007/s11771-016-3182-1

Google Scholar

[19] C. Takano, A.P. Zambrano, A.E.A. Nogueira, M.B. Mourao, Y. Iguchi, Chromites Reduction Reaction Mechanisms in Carbon-Chromites Composite Agglomerates at 1773 K, ISIJ Int. 47 (2007) 1585-1589.

DOI: 10.2355/isijinternational.47.1585

Google Scholar

[20] E. Shibata, S. Egawa, T. Nakamura, Reduction Behavior of Chromium Oxide in Molten Slag Using Aluminum, Ferrosilicon and Graphite, ISIJ Int. 42 (2002) 609-613.

DOI: 10.2355/isijinternational.42.609

Google Scholar

[21] Romie D. Laranjo, Thermodynamic Analysis in the Production of Chromiun Carbide from the Reduction of Chromium Oxide with Methane-containing Gas, Int. J. Eng. Technol. 4 (2018) 227-232.

Google Scholar

[22] O. Kubaschewski, C.B. Alcock, Metallurgical thermochemistry, 5th ed., Pergamon, Oxford, (1979).

Google Scholar