Antimicrobial Assay on PVDF Nanofiber Membrane

Article Preview

Abstract:

Many researches concentrated on development of antimicrobial membranes for many applications such as air or water filtration. Disk diffusion was well-known conventional method for antimicrobial assay. However, this method is preferable to hydrophilic materials, where inhibition zone was easily observed. For hydrophobic materials, negative test was always shown, except increase in antimicrobial loading. In this study, glucose fermentation was introduced as a new method for antimicrobial assay. The survived and viable bacteria either at the surface or attached inside the membranes could ferment glucose resulting in acid production and changing color of indicator in the glucose solution from pale orange to pink. FU8M and FA8M nanofiber membrane, loading with AgNO3 and Benzalkonium chloride (0.3-1.0%) were used as hydrophobic and hydrophilic membrane, respectively. The water absorption of these membranes took 2 h and 2 min, respectively, showing that the latter membrane improved its wettability. It is found that FU8M membrane showed no inhibition zone when the antimicrobial loading less than 1%, whereas the FA8M membrane showed inhibition zone from 8.6-14 mm, depending on antimicrobial loading. However, when glucose fermentation method was used, membranes showed the positive test after 9 hours of incubation at the antimicrobial concentration of 0.5%. Hence, this new method can be used as antimicrobial testing for membrane with simple and cost effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

339-346

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223–2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[2] T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers, J. Appl. Polym Sci. 96 (2) (2005) 557–569.

DOI: 10.1002/app.21481

Google Scholar

[3] D. Sebastián, M.J. Lázaro, I. Suelves, R. Moliner, V. Baglio, A. Stassi, A.S. Aricò, The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells, Int. J. Hydrogen energy. 37(2012) 6253-6260.

DOI: 10.1016/j.ijhydene.2011.07.004

Google Scholar

[4] Y-J. Kim, H-S. Kim, C-H. Doh, S-H. Kim, S-M. Lee, Technological and issues of polyacrylonitrile based nanofiber nonwoven separator for Li-ion rechargeable batteries, J. Power Sources 244 (2013) 196-206.

DOI: 10.1016/j.jpowsour.2013.01.166

Google Scholar

[5] S. Kaur, S. Sundarrajan, D. Rana, T. Matsuura, S. Ramakrishna, Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane, J. Membr. Sci. 392-393 (2012) 101-111.

DOI: 10.1016/j.memsci.2011.12.005

Google Scholar

[6] D-J. Chen, S. Lei, R-H. Wang, P. Min, Y-Q. Chen, Dielectrophoresis carbon Nanotube and Conductive polyaniline Nanofiber NH3 Gas sensor, Chinese J. Anal. Chem. 40 (2012) 145-149.

DOI: 10.1016/s1872-2040(11)60524-0

Google Scholar

[7] H. Bang, M. Gopiraman, B-S. Kim, S-H. Kim, I-S Kim, Effects of pH on electrospun PVA/acid-treated MWNT composite nanofibers, Coll. Surf. A: physicochem. Eng Aspects 409 (2012) 112-117.

DOI: 10.1016/j.colsurfa.2012.05.046

Google Scholar

[8] A.R. Unnithan, N.A.M. Barakat, P.B.T. Pichiah, G. Gnanasekaran, R. Nirmala, Y-S Cha, C-H Jung, M.E. Newehy, H.Y. Kim, Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl, Carbohydrate polym. 90 (2012) 1786-1793.

DOI: 10.1016/j.carbpol.2012.07.071

Google Scholar

[9] H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang, C.J. B. White, L. Zhu, Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption, Desalination 256 (2010) 141-147.

DOI: 10.1016/j.desal.2010.01.026

Google Scholar

[10] Z. Ma, K. Masaya, S. Ramakrishna, Immobilization of Cibacron blue F3GA on electrospun polysulphone ultrafine fiber surfaces towards developing an affinity membrane for albumin adsorption, J. Memb. Sci. 282 (2006) 237–244.

DOI: 10.1016/j.memsci.2006.05.027

Google Scholar

[11] J. Husheng, H. Wensheng, W. Liqiao, X. Bingshe, L. Xuguang, The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials, Dental mat. 24 (2008) 244-249.

DOI: 10.1016/j.dental.2007.04.015

Google Scholar

[12] R. Gokulakrishrun, S. Ravikumar, J.A. Raj, In vitro antibacterial potential of metal oxide nanoparticle against antibioticresistant bacterial pathogens. Asian Pacific J. Trop. Dis. (2012) 411-413.

DOI: 10.1016/s2222-1808(12)60089-9

Google Scholar

[13] N.A. Negm, S.M.I. Morsy, M.M. Said, Biocidal activity of some Mannich base cationic derivatives, Bioorg. & Med. Chem. 13 (2005) 5921–5926.

DOI: 10.1016/j.bmc.2005.07.031

Google Scholar

[14] H.V. Tran, L.D. Tran, C.T. Ba, H.D. Vu, T.N. Nguyen, D.G. Pham, P.X. Nguyen, Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan- based silver nanoparticles, Coll. and Surf. A: Physicochem. Eng. Aspects 360 (2010) 32–40.

DOI: 10.1016/j.colsurfa.2010.02.007

Google Scholar

[15] X. Xu, H. Yan, J. Chen, X. Zhang, Bioactive proteins from mushrooms, Biotech. Adv. 29 (2011) 667–674.

Google Scholar

[16] J. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Lui, V. Chen, Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J. Memb. Sci. 550 (2018) 173-197.

DOI: 10.1016/j.memsci.2017.12.071

Google Scholar

[17] C. Suwanboon, N. Chanunpanich, K. Kittiniyom, Antibacterial membrane from mixed poly (vinylidene fluoride) nanofiber and poly(vinyl alcohol) nanofiber, J. KMUTNB 28 (2018) 881-891. (in Thai).

DOI: 10.14416/j.kmutnb.2018.09.008

Google Scholar

[18] C.Y. Chen, G.W. Nace, P.L. Irwin, A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J. Microbio. Meth. 55 (2) (2003) 475-479.

DOI: 10.1016/s0167-7012(03)00194-5

Google Scholar

[19] J.Y. Chun, H.K. Kang, L. Jeong, Y.O. Kang, J-E. Oh, I-S. Yeo, SY. Jung, WH. Park, B.M. Min, Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles, Coll. Surf. B: Biointerfaces 78 (2010) 334-342.

DOI: 10.1016/j.colsurfb.2010.03.026

Google Scholar

[20] Information on https://www.ncbi. nlm.nih.gov/pmc/articles/PMC4682921.

Google Scholar

[21] Information on https://www.ncbi.nlm.nih. gov/pmc/articles/PMC4378976.

Google Scholar

[22] R. B. Wakshlak, R. Pedahzur, D. Avnir, Antibacterial activity of silver-killed bacteria: The Zombies, effect, Science Reports, 5 (2015) April.

DOI: 10.1038/srep09555

Google Scholar

[23] V. Hemraj, S. Diksha, G. Avneet, A review on commonly used biochemical test for bacteria. Innovare, J. Life Sci. 1 (2013) 1-7.

Google Scholar