Development of Stress- and Strain-Based Fracture Forming Limit Curves of Sheet Aluminium-Alloy AA2024-T3 through Various Approaches

Article Preview

Abstract:

In this work, four fracture criteria—namely, Fracture Forming Limit Curve (FFLC), Fracture Forming Limit Stress Curve (FFLSC), Fracture Locus (FL) and Fracture Locus Embedded with Bao-Wierzbicki Ductile Damage Criterion (BW-FL)—are comparatively deployed to forecast breakage of deformed AA2024-T3 sheet aluminium-alloy. An FFLC can be experimentally formed by conducting a set of Nakajima stretch-forming based tests. To obtain an FFLSC, such an FFLC drawn in the strain space has to be entirely mapped onto the stress space. This can computationally be accomplished with the help of those well-known plasticity-relevant models like the Hill’48 anisotropic yield criterion and the Swift hardening law. Likewise, both BW-FL and FL in terms of stress triaxialities and critical plastic strains can mathematically be derived from the FFLC incorporated with the Hill’48 anisotropic yield criterion. Hole expansion and tree-point bending tests are carefully carried out both experimentally and simulatively to verify those four generated fracture limits. The more innovative FFLSC and FL demonstrate more accurate prediction on rupture of AA2024-T3 sheet aluminium-alloy than the conventional FFLC. The BW-FL however performs the worst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-65

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Mazzolani, Aluminum Alloy Structures, second ed., Taylor and Francis, London, (1994).

Google Scholar

[2] A.M. Kliauga, R.E. Bolmaro, M. Ferrante, The evolution of texture in an equal channel pressed aluminum AA1050, Mater. Sci. Eng. A. 623 (2015) 22-31.

DOI: 10.1016/j.msea.2014.10.073

Google Scholar

[3] K.C. Sekhar, R. Narayanasamy, K. Velmanirajan, Experimental investigations on microstructure and formability of cryorolled AA 5052 sheets, Mater. Des. 53 (2014) 1064-1070.

DOI: 10.1016/j.matdes.2013.08.008

Google Scholar

[4] R. Narayanasamy, R. Ravindran, K. Manonmani, J. Satheesh, A crystallographic texture perspective formability investigation of aluminium 5052 alloy sheets at various annealing temperatures, Mater. Des. 30 (2009) 1804-1817.

DOI: 10.1016/j.matdes.2008.09.011

Google Scholar

[5] M. Jansson, L. Nilsson, K. Simonsson, On constitutive modeling of aluminum alloys for tube hydroforming applications, Int. J. Plast. 21 (2005) 1041-1058.

DOI: 10.1016/j.ijplas.2004.06.005

Google Scholar

[6] S. Park, C.G. Lee, J. Kim, et al., J. Eng. Mater. Tech. 130 (2008) 1-10.

Google Scholar

[7] V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A. 679 (2017) 56-65.

DOI: 10.1016/j.msea.2016.10.027

Google Scholar

[8] G. Centenoa, A.J. Martínez-Donaire, C. Vallellano, L.H. Martínez-Palmeth, D. Morales, C. Suntaxi, F.J. García-Lomas, Experimental Study on the Evaluation of Necking and Fracture Strains in Sheet Metal Forming Processes, Proc. Eng. 63 (2013) 650-658.

DOI: 10.1016/j.proeng.2013.08.204

Google Scholar

[9] C. Vallellano, D. Morales, F.J. Garcia-Lomas, A study to predict failure in biaxially stretched sheets of aluminum alloy 2024-T3, Mater. Manu. Proc. 23 (2008) 303-310.

DOI: 10.1080/10426910801974804

Google Scholar

[10] S. Basak, S.K. Panda, Necking and fracture limit analyses of different pre-strained sheet materials in polar effective plastic strain locus using Yld2000-2d yield model, J. Mater. Proc. Tech. 267 (2019) 289-307.

DOI: 10.1016/j.jmatprotec.2018.10.004

Google Scholar

[11] N. Park, H. Huh, J.W. Yoon, Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain, Int. J. Sol. Struc. 151 (2018) 181-194.

DOI: 10.1016/j.ijsolstr.2018.01.009

Google Scholar

[12] S. Panich, M. Liewald, V. Uthaisangsuk, Stress and strain based fracture forming limit curves for advanced high strength steel sheet, Int. J. Mater. Form. 11 (2017) 643-661.

DOI: 10.1007/s12289-017-1378-z

Google Scholar

[13] K. Isik, M.B. Silva, A.E. Tekkaya, P.A.F. Martins, Formability limits by fracture in sheet metal forming, J. Mater. Proc. Tech. 214 (2014) 1557-1565.

DOI: 10.1016/j.jmatprotec.2014.02.026

Google Scholar

[14] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (2004) 81-98.

DOI: 10.1016/j.ijmecsci.2004.02.006

Google Scholar

[15] I. S. O. 12004-2, Metallic Materials-Sheet and Strip-Determination of Forming Limit Curves-Part 2: Determination of Forming Limit Curves in the Laboratory, International Organization for Standardization (2008), pp.5-8.

DOI: 10.3403/30150423u

Google Scholar

[16] ASTM E2218-02, Standard Test Method for Determining Forming Limit Curves, ASTM Standards (2008), pp.1252-1266.

Google Scholar

[17] S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels, Mater. Des. 51 (2013) 756-766.

DOI: 10.1016/j.matdes.2013.04.080

Google Scholar

[18] M.C. Butuc, J.J. Gracio, A.B. Da Rocha, An experimental and theoretical analysis on the application of stress-based forming limit criterion, Int. J. Mech. Sci. 48 (2006) 414-429.

DOI: 10.1016/j.ijmecsci.2005.11.007

Google Scholar

[19] S. Panich, K. Chongbunwatana, M. Kamonrattanapisud, Formability prediction of advanced high-strength steel sheets by means of combined experimental and numerical approaches, Proc. Manu. 29 (2019) 528-535.

DOI: 10.1016/j.promfg.2019.02.171

Google Scholar

[20] Y. Bao, T. Wierzbicki, A Comparative Study on Various Ductile Crack Formation Criteria, J. Eng. Mater. Tech. 126 (2004) 314-324.

DOI: 10.1115/1.1755244

Google Scholar

[21] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31-48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[22] S. Basak, S.K. Panda, Failure strains of anisotropic thin sheet metals: Experimental evaluation and theoretical prediction, Int. J. Mech. Sci. 151 (2019) 356-374.

DOI: 10.1016/j.ijmecsci.2018.10.065

Google Scholar

[23] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond, 193 (1948) 281-297.

Google Scholar

[24] P. Kalawong, N. Seemuang, S. Panich, in: Proceeding of the 2nd International Conference on Engineering Innovation (ICEI), Bangkok Thailand (2018) 24-29.

DOI: 10.1109/icei18.2018.8448911

Google Scholar