[1]
R.C Reed. (2008). The superalloys: fundamentals and applications. Cambridge university press.
Google Scholar
[2]
P. Wangyao, T. Korath, T. Harnvirojkul and W. Homkajai, Effect of Re-Heat treatment conditions on microstructural refurbishment of nickel based superalloy turbine blades, IN-738, after long-term service. J.Met.Mater.Miner. 14 (2004) 49-59.
Google Scholar
[3]
P. Wangyao, G. Lothongkum, V. Krongtong, S. pailai and S. Polsilapa, Effect of heat treatments after HIP process on microstructure refurbishment in cast nickel base superalloy, IN-738. J.Met.Mater.Miner. 15 (2005)69-78.
DOI: 10.1515/htmp.2007.26.2.151
Google Scholar
[4]
R. Ricks, A.J. Porter and R.C. Ecob, The growth of γ' precipitates in nickel-base superalloys. Acta Metallurgica. 31 (1983) 43-53.
DOI: 10.1016/0001-6160(83)90062-7
Google Scholar
[5]
M. Fahrmann, W. Hermann, E. Fahrmann, A. Boegli, T.M. Pollock and H.G. Sockel, Determination of matrix and precipitate elastic constants in (γ–γ') Ni-base model alloys, and their relevance to rafting, Mater. Sci. Eng. A. 260 (1999), 212-221.
DOI: 10.1016/s0921-5093(98)00953-8
Google Scholar
[6]
T. Rojhirunsakool, S. Nag and R. Banerjee, Discontinuous Precipitation of γ' Phase in Ni-Co-Al Alloys. JOM. 66 (2014), 1465-1470.
DOI: 10.1007/s11837-014-0998-8
Google Scholar
[7]
S. Meher, T. Rojhirunsakool, J.Y. Hwang, S. Nag, J. Tiley and R. Banerjee, Coarsening behaviour of gamma prime precipitates and concurrent transitions in the interface width in Ni-14 at.% Al-7 at.% Cr. Philo. Mag. Lett. 93 (2013) 521-530.
DOI: 10.1080/09500839.2013.816446
Google Scholar
[8]
R. Mitchell, M. Preuss, S. Tin and M.C. Hardy, The influence of cooling rate from temperatures above the γ' solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys. Mater. Sci. Eng. A. 473 (2008) 158-165.
DOI: 10.1016/j.msea.2007.04.098
Google Scholar
[9]
T. Rojhirunsakool, S. Meher, J. Y. Hwang, S. Nag, J. Tiley and R. Banerjee, Influence of composition on monomodal versus multimodal γ' precipitation in Ni–Al–Cr alloys. J. Mater. Sci. 48 (2013) 825-831.
DOI: 10.1007/s10853-012-6802-7
Google Scholar
[10]
P. Sarosi, B. Wang, J.P. Simmons, Y. Wang and M.J. Mills, Formation of multimodal size distributions of γ' in a nickel base superalloy during interrupted continuous cooling. Scr. Mater. 57 (2007) 767-770.
DOI: 10.1016/j.scriptamat.2007.06.014
Google Scholar
[11]
R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt and E. Kozeschnik, Multimodal size distributions of γ' precipitates during continuous cooling of UDIMET 720 Li. Acta Mater. 57 (2009) 5739-5747.
DOI: 10.1016/j.actamat.2009.08.002
Google Scholar
[12]
Y. Wen, J.P. Simmons, C. Shen, C. Woodward and Y. Wan, Phase-field modeling of bimodal particle size distributions during continuous cooling. Acta Mater. 51 (2003) 1123-1132.
DOI: 10.1016/s1359-6454(02)00516-5
Google Scholar
[13]
D.A. Porter and K. E. Easterling . (1992). Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press.
Google Scholar
[14]
A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser and R. Banerjee, Influence of cooling rate on the development of multiple. Mater. Charact. (2011) 878-886.
DOI: 10.1016/j.matchar.2011.06.002
Google Scholar
[15]
J. Tiley, G.B. Viswanathan, J.Y. Hwang, A. Shiveley and R. Banerjee, Evaluation of gamma prime volume fractions and lattice misfits in a nickel base. Mater. Sci. Eng. A. 528 (2010) 32-36.
DOI: 10.1016/j.msea.2010.07.036
Google Scholar