[1]
V. Deo, S. Ansari, S. Mandia, M. Bhongade, Therapeutic efficacy of subgingivally delivered doxycycline hyclate as an adjunct to non-surgical treatment of chronic periodontitis, J. Oral. Maxillofac. Res. 2 (2011) e3.
DOI: 10.5037/jomr.2011.2103
Google Scholar
[2]
M. Kouchak, In situ gelling systems for drug delivery, Jundishapur. J. Nat. Pharm. Prod. 9 (2014) e20126.
DOI: 10.17795/jjnpp-20126
Google Scholar
[3]
M. Parent, C. Nouvel, M. Koerber, A. Sapin, P. Maincent, A. Boudier, PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release, J. Control. Release. 172 (2013) 292-304.
DOI: 10.1016/j.jconrel.2013.08.024
Google Scholar
[4]
W. Rungseevijitprapa, R. Bodmeier, Injectability of biodegradable in situ forming microparticle systems (ISM), Eur. J. Pharm. Sci. 36 (2009) 524-531.
DOI: 10.1016/j.ejps.2008.12.003
Google Scholar
[5]
V.B.D. Mohanty, N. Simharaju, M.A. Haque, C.K. Sahoo, A review on in situ gel: a novel drug delivery system, Int. J. Pharm. Sci. Rev. Res. 50 (2018) 175-181.
Google Scholar
[6]
C. Bode, H. Kranz, F. Siepmann, J. Siepmann, In-situ forming PLGA implants for intraocular dexamethasone delivery, Int. J. Pharm. 548 (2018) 337-348.
DOI: 10.1016/j.ijpharm.2018.07.013
Google Scholar
[7]
L.N. Turino, R.N. Mariano, S. Boimvaser, J.A. Luna, In situ-formed microparticles of PLGA from O/W emulsions stabilized with PVA: encapsulation and controlled release of progesterone, J. Pharm. Innov. 9 (2014) 132-140.
DOI: 10.1007/s12247-014-9180-7
Google Scholar
[8]
M. Parent, A. Boudier, J. Perrin, C. Vigneron, P. Maincent, N. Violle, et al., In situ microparticles loaded with s-nitrosoglutathione protect from stroke, PLoS One. 10 (2015) e0144659.
DOI: 10.1371/journal.pone.0144659
Google Scholar
[9]
X. Luan, R. Bodmeier, In situ forming microparticle system for controlled delivery of leuprolide acetate: Influence of the formulation and processing parameters, Eur. J. Pharm. Sci. 27 (2006) 143-149.
DOI: 10.1016/j.ejps.2005.09.002
Google Scholar
[10]
G. Tiwari, R. Tiwari, A.K. Rai, Cyclodextrins in delivery systems: applications, J. Pharm. Bioallied. Sci. 2 (2010) 72-79.
DOI: 10.4103/0975-7406.67003
Google Scholar
[11]
N. Lertsuphotvanit, P. Chaiya, T. Phaechamud, Matrix forming behavior of doxycycline hyclate-loaded beta-cyclodextrin in situ forming matrix and microparticle, Key Eng. Mater. 819 (2019) 221-226.
DOI: 10.4028/www.scientific.net/kem.819.221
Google Scholar
[12]
S. Tuntarawongsa, N. Lertsuphovanit, J. Mahadlek, T. Phaechamud, Transformation of beta-cyclodextrin loaded oil/oil emulsion into microparticle for drug delivery system, Thai J. Pharm. Sci. 42 (2018) 202-205.
Google Scholar
[13]
M.V.S. Varma, A.M. Kaushal, A. Garg, S. Garg, Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems, Am. J. Adv. Drug Deliv. 2 (2004) 43-57.
DOI: 10.2165/00137696-200402010-00003
Google Scholar
[14]
5 - Mathematical models of drug release. in: M.L. Bruschi (Eds.), Strategies to modify the drug release from pharmaceutical systems, Woodhead Publishing, Cambridge, 2015, pp.63-86.
DOI: 10.1016/b978-0-08-100092-2.00005-9
Google Scholar
[15]
N.P. Lang, J. Lindhe, Clinical Periodontology and Implant Dentistry, 2 Volume Set. Wiley, (2015).
Google Scholar
[16]
T.A. Ahmed, H.M. Ibrahim, A.M. Samy, A. Kaseem, M.T. Nutan, M.D. Hussain. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability. AAPS PharmSciTech. 15 (2014) 772–780.
DOI: 10.1208/s12249-014-0101-3
Google Scholar
[17]
Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert. Opin. Drug. Deliv. 7 (2010) 429-444.
DOI: 10.1517/17425241003602259
Google Scholar
[18]
C.S. Amarachi, G. Onunkwo, I. Onyishi, Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review, Res. J. Pharm., Biol. Chem. Sci. 4 (2013) 97-103.
Google Scholar