[1]
M.V. Varma, K.S. Pang, N. Isoherranen, P. Zhao, Dealing with the complex drug-drug interactions: towards mechanistic models, Biopharm. Drug Dispos. 36 (2015) 71-92.
DOI: 10.1002/bdd.1934
Google Scholar
[2]
R.A. van Waterschoot, A.H. Schinkel, A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice, Pharmacol. Rev. 63 (2011) 390-410.
DOI: 10.1124/pr.110.002584
Google Scholar
[3]
A.S. Darwich, S. Neuhoff, A. V, Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the Advanced Dissolution, Absorption, Metabolism (ADAM), model, Curr. Drug Metab. 11 (2010) 716-729.
DOI: 10.2174/138920010794328913
Google Scholar
[4]
A.E. van Herwaarden, R.A.B. van Waterschoot, A.H. Schinkel, How important is intestinal cytochrome P450 3A metabolism?, Trends Pharmacol. Sci. 30 (2009) 223-227.
DOI: 10.1016/j.tips.2009.02.003
Google Scholar
[5]
F. Thiebaut, T. Tsurno, H. Hamada, M.M. Gottesman, I. Pastan, M.C. Willingham, Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues, Proc. Natl. Acad. Sci. USA 84 (1987) 7735-7738.
DOI: 10.1073/pnas.84.21.7735
Google Scholar
[6]
R.A. van Waterschoot, A.H. Schinkel, A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice, Pharmacol. Rev. 63 (2011) 390-410.
DOI: 10.1124/pr.110.002584
Google Scholar
[7]
A.S. Darwich, S. Neuhoff, M. Jamei, A. Rostami-Hodjegan, Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the Advanced Dissolution, Absorption, Metabolism (ADAM), model. Curr. Drug Metab. 11 (2010) 716-729.
DOI: 10.2174/138920010794328913
Google Scholar
[8]
G.K. Randhawa, J.S. Kullar, Rajkumar, Bioenhancers from mother nature and their applicability in modern medicine, Int. J. Appl. Basic Med. Res. 1 (2011) 5–10.
DOI: 10.4103/2229-516x.81972
Google Scholar
[9]
K. Mittal, R. Patadia, C. Vora, R. Mashru, Myriad molecules to overcome efflux drug transporters and drug-metabolizing enzymes: a journey from synthetic to natural, Crit. Rev. Ther. Drug Carrier Syst. 32 (2015) 441-460.
DOI: 10.1615/critrevtherdrugcarriersyst.2015012019
Google Scholar
[10]
G.B. Dudhatra, S.K. Mody, M.M. Awale, H.B. Patel, C.M. Modi, A. Kumar, D.R. Kamani, B.N. Chauhan, A comprehensive review on pharmacotherapeutics of herbal bioenhancers, Scientific World Journal 2012 (2012) 637953.
DOI: 10.1100/2012/637953
Google Scholar
[11]
Y. Tanigawara, N. Okamura, M. Hirai, M. Yasuhara, K. Ueda, N. Kioka, T. Komano, R. Hori, Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1), J. Pharmacol. Exp. Ther. 263 (1992) 840-845.
DOI: 10.1016/s0021-9258(18)35757-0
Google Scholar
[12]
K. Ueda, N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, T. Komano, R. Hori, Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone, J. Biol. Chem. 267 (1992) 24248-24252.
DOI: 10.1016/s0021-9258(18)35757-0
Google Scholar
[13]
Ajazuddin, A. Alexander, A. Qureshi, L. Kumari, P. Vaishnav, M. Sharma, S. Saraf, S. Saraf, Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients, Fitoterapia 97 (2014) 1-14.
DOI: 10.1016/j.fitote.2014.05.005
Google Scholar
[14]
R.D. Bennett, S. Hasegawa, Limonoids of calamondin seeds, Tetrahedron 37 (1981) 17-24.
DOI: 10.1016/s0040-4020(01)97708-7
Google Scholar
[15]
R.W. Wang, D.J. Newton, T.D. Scheri, A.Y.H. Lu, Human cytochrome P450 3A4-catalyzed testosterone 6β-hydroxylation and erythromycin n-demethylation competition during catalysis, Drug Metab. Dispos. 25 (1997) 502-507.
Google Scholar
[16]
S. Zhou, S.Y. Chan, B.C. Goh, E. Chan, W. Duan, M. Huang, H.L Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs, Clin. Pharmacokinet. 44 (2005) 279–304.
DOI: 10.2165/00003088-200544030-00005
Google Scholar
[17]
E-j. Wang, C.N. Casciano, R.P. Clement W.W. Johnson, Cooperativity in the inhibition of P-glycoprotein-mediated daunorubicin transport: evidence for half-of-the-sites reactivity, Arch. Biochem. Biophys. 383 (2000) 91-98.
DOI: 10.1006/abbi.2000.2004
Google Scholar
[18]
F. Tiberghien, F. Loor, Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay, Anticancer Drugs 7 (1996) 568-578.
DOI: 10.1097/00001813-199607000-00012
Google Scholar
[19]
J. Hunter, M.A. Jepson, T. Tsuruo, N.L. Simmons, B.H. Hirst, Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators, J. Biol. Chem. 268 (1993) 14991-14997.
DOI: 10.1016/s0021-9258(18)82429-2
Google Scholar