Structure and Morphology Properties of Nanosized La0.75K0.05Ba0.05Sr0.15MnO3 Manganite

Article Preview

Abstract:

Nanosized La0.75K0.05Ba0.05Sr0.15MnO3 manganite have been synthesized using sol-gel method. Afterwards, the samples were sintered at eight different temperature ranging from 650 to 1000 °C. Phase purity, crystal structure and the morphology of the sample have been examined using X-Ray Diffractometer (XRD) and Scanning Electron Microscope. It has been found that different higher sintering temperature greatly affect the phase purity and crystallite size of the sample. Regardless of the sintering temperature, all the samples crystallized in rhombohedral structure with R-3c space group. The crystallite size of the samples is found to increase from 41.59 nm up to 73.42 nm as the sintering temperature increases. Further analysis from XRD result shows that sintering temperature also affect the average Mn-O bond length and Mn-O-Mn bond angle of the sample. The average Mn-O bond length is found to increase while the average Mn-O-Mn bond angle tends to decrease as sintering temperature increases. SEM measurement shows that various grain size ranging from ~100 nm up to ~ 350 nm exists in all the sample regardless the sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-111

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kitanovski, J. Tuˇsek, U. Tomc, U. Plaznik, M. Ozbolt, A. Poredoˇs, Magnetocaloric energy conversion: From theory to applications, Springer, (2014).

DOI: 10.1007/978-3-319-08741-2_5

Google Scholar

[2] R. Skini, A. Omri, M. Khlifi, E. Dhahri, E.K. Hlil, Large magnetocaloric effect in lanthanum-deficiency manganites La0.8−x□xCa0.2MnO3 (0.00≤x≤0.20) with a first-order magnetic phase transition, J. Magn. Magn. Mater. 364 (2014) 5–10.

DOI: 10.1016/j.jmmm.2014.04.009

Google Scholar

[3] C.S. Xiong, Q.P. Huang, Y.H. Xiong, Z.M. Ren, L.G. Wei, Y.D. Zhu, X.S. Li, C.L. Sun, Electro-magnetic transport behavior of La0.7Ca0.3MnO3/SnO2 composites, Mater. Res. Bull. 43 (2008) 2048–(2054).

DOI: 10.1016/j.materresbull.2007.09.009

Google Scholar

[4] M. Khlifi, E. Dhahri, E. K. Hlil, Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2−x□xMnO3 post-annealed at 800°C, J. Alloys Comp. 587 (2014) 771–777.

DOI: 10.1016/j.jallcom.2013.11.012

Google Scholar

[5] C. Reitz, P. M. Leufke, R. Schneider, H. Hahn, T. Brezesinski, Large magnetoresistance and electrostatic control of magnetism in ordered mesoporous La1–xCaxMnO3 thin films, Chem. Mater. 26 (2014) 5745–5751.

DOI: 10.1021/cm5028282

Google Scholar

[6] M. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger, M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite, J. Magn. Magn. Mater. 324 (2012) 2821–2828.

DOI: 10.1016/j.jmmm.2012.04.017

Google Scholar

[7] S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering, Mater. Res. Bull. 99 (2019) 73–78.

DOI: 10.1016/j.materresbull.2017.10.049

Google Scholar

[8] K. Navin, R. Kurchania, The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles, Ceram. Int. 44 (2018) 4973–4980.

DOI: 10.1016/j.ceramint.2017.12.091

Google Scholar

[9] A.R. Shelke, G.S. Ghodake, D.-Y. Kim, A.V. Ghule, S.D. Kaushik, C.D. Lokhande, N.G. Deshpande, Correlation of structural, transport and magnetic properties in La1−xZrxMnO3 manganite samples, Ceram. Int. 42 (1016) 12038–12045.

DOI: 10.1016/j.ceramint.2016.04.131

Google Scholar

[10] W. Xia, L. Li, H. Wu, P. Xue, X. Zhu, Structural, morphological, and magnetic properties of sol-gel derived La0.7Ca0.3MnO3 manganite nanoparticles, Ceram. Int. 43 (2017) 3274–3283.

DOI: 10.1016/j.ceramint.2016.11.160

Google Scholar

[11] S. Bilger, E. Syskakis, A. Naoumidis, H. Nickel, Sol-gel synthesis of strontium-doped lanthanum manganite, J. Am. Ceram. Soc. 75 (1992) 964–970.

DOI: 10.1111/j.1151-2916.1992.tb04167.x

Google Scholar

[12] R. M'nassri, N. Chniba-Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites, J. Alloys Compd. 626, (2015) 20–28.

DOI: 10.1016/j.jallcom.2014.11.141

Google Scholar

[13] M.A. Gdaiem, S. Ghodhbane, A. Dhahri, J. Dhahri, E.K. Hlil, Effect of cobalt on structural, magnetic and magnetocaloric properties of La0.8Ba0.1Ca0.1Mn1-xCoxO3 (x = 0.00, 0.05 and 0.10) manganites, J. Alloys Compd. 681 (2016) 547–554.

DOI: 10.1016/j.jallcom.2016.04.143

Google Scholar

[14] A. Jerbi, A. Krichene, N. Chniba-Boudjada, W. Boujelben, Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A=Na and K) and composite, Physica B Condens. Matter 477 (2015) 75–82.

DOI: 10.1016/j.physb.2015.08.022

Google Scholar

[15] R. Felhi, H. Omrani, M. Koubaa, W.C. Koubaa, A. Cheikhrouhou, Effects of non-magnetic Ti4+ ion doping on the structural, magnetic and magnetocaloric properties of La0.65Dy0.05Sr0.3Mn1−xTixO3 compounds, J. Mater. Sci.: Mater. Electron. 30 (2019) 12426–12436.

DOI: 10.1007/s10854-019-01602-8

Google Scholar

[16] L.C. de Jonghe, M.N. Rahaman, 4.1 Sintering of ceramics, in: S. Somiya, F. Aldinger, N. Clausen, R.M. Spriggs, K. Uchino, K. Koumoto, M. Kaneno (eds.), Handbook of Advanced Ceramics Volume I:Material Science, Springer Inc., p.187–264, (2003).

DOI: 10.1016/b978-012654640-8/50021-3

Google Scholar