Conductivity of Lanthanum Silicate Apatite Derived from Rice Husk

Article Preview

Abstract:

Effect of difference silica source, namely commersial silica and silica from rice husk, as Si precursor on the synthesis of lanthanum silicate apatite (LSO) have been investigated. The conductivity of LSO was determined by impedance spectroscopy using LCR meter. The conductivity of LSO based on rice husk extraction (s700°C = 2.13 ´ 10-4 S.cm-1) was ten times lower than that of LSO with commercial silica (s700°C = 3.11´ 10-5 S.cm-1). Carbon content as an impurity on silica from rice husk extraction is suspected to decrease the homogeneity of its morphology so that it has an impact on its conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-127

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ma, N. Fenineche, O. Elkedim, M. Moliere, H. Liao P. Briois, Synthesis of apatite type La10−xSrxSi6O27−0.5x powders for IT-SOFC using sol–gel process, Int. J. Hydrogen Energy. 41 (2016) 9993–10000.

DOI: 10.1016/j.ijhydene.2016.02.006

Google Scholar

[2] J.E.H. Sansom, D. Richings, P.R. Slater, A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26, Solid State Ionics 139 (2001) 205–210.

DOI: 10.1016/s0167-2738(00)00835-3

Google Scholar

[3] S. Guillot, S. Beaudet-Savignat, S. Lambert, R.N. Vannier, P. Roussel, F. Porcher, Evidence of local defects in the oxygen excess apatite La9.67(SiO4)6O2.5 from high resolution neutron powder diffraction, J. Solid State Chem. 82 (2009) 3358–3364.

DOI: 10.1016/j.jssc.2009.09.031

Google Scholar

[4] A.R. Noviyanti, N. Akbar, I. Hastiawan, I. Rahayu, Haryono, Y. T. Malik, Risdiana, Bi Doping effect on the conductivity of lanthanum silicate apatite, Mater. Sci. Forum 996 (2019) 451-455.

DOI: 10.4028/www.scientific.net/msf.966.451

Google Scholar

[5] A.R. Noviyanti, I. Hastiawan, Y.B. Yuliyati, I. Rahayu, D. Rosyani, D.G. Syarif, LSO apatite-YSZ composite as a solid electrolyte for solid oxide fuel cells, AIP Conf. Proc . (2017) 040001.

DOI: 10.1063/1.4983939

Google Scholar

[6] A.R. Noviyanti, B. Prijamboedi, I. Nyoman Marsih, Ismunandar, Hydrothermal preparation of apatite-type phases La9.33Si6O26 and La9M1Si6O26.5 (M = Ca, Sr, Ba), ITB J. Sci. 44 (2012) 193–203.

DOI: 10.5614/itbj.sci.2012.44.2.8

Google Scholar

[7] S. Ferdov, P. Rauwel, Z. Lin, R.A.S. Ferreira, A. Lopes, A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature, J. Solid State Chem. 183 (2010) 2726–2730.

DOI: 10.1016/j.jssc.2010.09.019

Google Scholar

[8] P.J. Panteix, I. Julien, P. Abélard, D. Bernache-Assollant, Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite, Ceram. Int. 34 (2008) 1579–1586.

DOI: 10.1016/j.ceramint.2007.05.004

Google Scholar

[9] S. Célérier, C. Laberty, F. Ansart, P. Lenormand, P. Stevens, New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26, Ceram. Int. 32 (2006) 271–276.

DOI: 10.1016/j.ceramint.2005.03.001

Google Scholar

[10] Y. Nakayama, S. Aono, H. Sadaoka, Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy), Chem. Lett. 24 (1995) 431–435.

DOI: 10.1002/chin.199545017

Google Scholar

[11] M. Higuchi, K. Kodaira, S. Nakayama, Nonstoichiometry in apatite-type neodymium silicate single crystals, J. Crystal Growth. 16 (2000), 317–321.

DOI: 10.1016/s0022-0248(00)00421-8

Google Scholar

[12] M.S. Islam, J.R. Tolchard, P.R. Slater, An apatite for fast oxide ion conduction, Chem. Commun. 9 (2003) 1486–1487.

Google Scholar