Fe3O4.SiO2: A Study of Structural and Magnetic Properties in Various Volume of Tetraethyl Orthosilicate

Article Preview

Abstract:

Magnetic nanofluids are a category of nanomaterial which exhibit simultaneously liquid and superparamagnetic properties. These nanofluids are magnetic nanoparticles stably dispersed in liquid carrier. Magnetic nanoparticles with and without SiO2 encapsulation have been successfully synthesized by co-precipitation method from ferrous and ferric precursors dispersed in various liquid. Fe3O4 nanoparticles were investigated by Zeta Potential and HR-TEM to determine the stability of nanoparticles, average particles size and microstructure of nanoparticles. From zeta potential measurements, is was found that the value of zeta potential for Fe3O4 dispersed in ethanol was ± 0,9 mV, while dispersed in di-water was ± 31,1 mV, indicating that nanoparticles Fe3O4 are more stable in DI-water. The increasing of zeta potential indicated the adsorption of negatively charged hydroxyl group to the surface of Fe3O4 nanoparticles. From XRD measurements, it was found that crystal quality of Fe3O4.SiO2 sintering at 80 °C decreased by increasing the volume of tetraethyl orthosilicate (TEOS), while that samples sintering at 1000 °C have a good crystal quality with hexagonal phase of a-Fe2O3.SiO2. From SQUID measurements, it was found that samples of Fe3O4.SiO2 sintering at 80 °C with TEOS volumes of 1 ml and 2 ml showed a paramagnetic like while samples of a-Fe2O3.SiO2 sintering at 1000 °C with the same TEOS volume showed ferrimagnetic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias, Nature 423 (2003) 850-853.

DOI: 10.1038/nature01687

Google Scholar

[2] S. Prijic, G. Sersa, Magnetic nanoparticles as targeted delivery systems in oncology, Radiol. Oncol. 45 (2011) 1–16.

DOI: 10.2478/v10019-011-0001-z

Google Scholar

[3] A.R. Kiasat, J. Davarpanah, Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo [2,1-b] phthalazine-triones and pyrazolo [1,2-b] phthalazine-diones, J. Mol. Catal. A-Chem. 373 (2013) 46–54.

DOI: 10.1016/j.molcata.2013.03.003

Google Scholar

[4] H. Sun, X. Zeng, M. Liu, S. Elingarami, G. Li, B. Shen, N. He, Synthesis of size-controlled Fe3O4@SiO2 magnetic nanoparticles for nucleic acid analysis, J. Nanosci. Nanotechnol. 12 (2012) 267–273.

DOI: 10.1166/jnn.2012.5170

Google Scholar

[5] C. Li, C. Ma, F. Wang, Z. Xil, Z. Wang, Y. Deng, N. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites, J. Nanosci. Nanotechnol. 12 (2012) 2964–2972.

DOI: 10.1166/jnn.2012.6428

Google Scholar

[6] M. Abbas, B. Parvatheeswara Rao, Md. Nazrul Islam, S. M. Naga, M. Takahashi, C. Kim, Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process, Ceram. Int. 40 (2014) 1379–1385.

DOI: 10.1016/j.ceramint.2013.07.019

Google Scholar

[7] S. Laurent S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064–2110.

DOI: 10.1021/cr068445e

Google Scholar

[8] J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems, Adv. Chem. Phys. 98 (1997) 283-494.

DOI: 10.1002/9780470141571.ch4

Google Scholar

[9] R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999), 359-372.

Google Scholar

[10] G.F. Goya, M.P. Morales, Field dependence of blocking temperature in magnetite nanoparticles, J. Meta. Nanocryst. Mater. 20-21 (2004) 673-678.

DOI: 10.4028/www.scientific.net/jmnm.20-21.673

Google Scholar

[11] Georgia C. Papaefthymiou, Nanoparticle magnetism, Nano Today, 4 (2009) 438-447.

Google Scholar

[12] D.A. Balaev, S.V. Semenov, A.A. Dubrovskiy, S.S. Yakushkin, V.L. Kirillov, O.N. Martyanovc, Superparamagnetic blocking of an ensemble of magnetite nanoparticles upon interparticle interactions, J. Magn. Magn. Mater. 440 (2017) 199-202.

DOI: 10.1016/j.jmmm.2016.12.046

Google Scholar

[13] T. Saragi, N. Syakir, T. H. Nainggolan, C. Alboin, Risdiana, The effect of molar composition of Co2+ to structure and magnetic properties of CoFe2O4, AIP Conf. Proc. 1554 (2013) 123-125.

DOI: 10.1063/1.4820300

Google Scholar

[14] T. Saragi, L.D. Busrifa, S. Butarbutar, B. Permana, Risdiana, The impact of synthesis temperature on magnetite nanoparticles size synthesized by co-precipitation method, IOP Conf. Series: J. Phys.: Conf. Ser. 1013 (2018) 012190 (4 pages).

DOI: 10.1088/1742-6596/1013/1/012190

Google Scholar

[15] T. Saragi, B. Permana, M. Safitri, L.D. Busrifa, S.W. Butarbutar, L. Safriani, I. Rahayu, Risdiana, The Effect of pH and sintering treatment on magnetic nanoparticles ferrite based synthesized by coprecipitation method, J. Phys.: Conf. Ser. 1080 (2018) 012019 (5 pages).

DOI: 10.1088/1742-6596/1080/1/012019

Google Scholar

[16] T. Saragi, B. Permana, A. Therigan, S. Hidayat, N. Syakir, Risdiana, Physical properties of encapsulated iron oxide, Mater. Sci. Forum 966 (2019) 277-281.

DOI: 10.4028/www.scientific.net/msf.966.277

Google Scholar

[17] S. Hong, Y. Chang, I. Rhee, Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging, J. Korean Phy. Soc. 56 (2010) 868-873.

DOI: 10.3938/jkps.56.868

Google Scholar