Active Materials LiFeSixP1-xO4/C as Lithium Ion Battery Cathode with Doping Variations Si Ions (0≤x≤0,06)

Article Preview

Abstract:

A cathode Lithium Ferro Phospate (LFP) composite material with variation doping ion Silicon (Si) with x = 0; 0,01; 0,03; 0.06 and carbon coating (LiFeSixP1-xO4/C) as lithium ion battery cathode were synthesized by a solid state reaction and wet milling methods. X-Ray Diffraction (XRD) pattern showed that the of olivine phase formed, and analysis characterization of Scanning Electron Microscopy (SEM) have shown average dimension particle of cathode in orde 1 micron. Analysis by Cyclic Voltammetry (CV) doping ion Si x = 0,03 have the best reversible electrochemical process than the other concentration, and have the highest charge and discharge capacity (78,745 mAh/g).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Linden, T. B. Reddy, Handbook of Batteries, Third ed. McGraw-Hill Professional (2002).

Google Scholar

[2] O. Toprakci, H.A.K. Toprakci, L. Ji, X. Zhang, Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries, KONA Powder Part. J. 28 (2010) 50–73.

DOI: 10.14356/kona.2010008

Google Scholar

[3] M. Lee, S. Lee, P. Oh, Y. Kim, J. Cho, High performance LiMn2O4 cathode materials grown with epitaxial layered lanostructure for Li-ion batteries, Nano Lett. 14 (2014) 993-999.

DOI: 10.1021/nl404430e

Google Scholar

[4] S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, S. Fan, Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries, Adv. Mater. 24 (2012) 2294–2298.

DOI: 10.1002/adma.201104720

Google Scholar

[5] S. Sarkar, S. Mitra, Carbon coated submicron sized-LiFePO4 : Improved high rate performance lithium battery cathode, Energy Procedia 54, (2014) 718–724.

DOI: 10.1016/j.egypro.2014.07.312

Google Scholar

[6] Y. Li, J. Wang, J. Yao, H.X. Huang, Z.Q. Du, H. Gu, Z.T. Wang, Enhanced cathode performance of LiFePO4/C composite by novel reaction of ethylene glycol with different carboxylic acids, Mater. Chem. Phys. 224 (2019) 293–300.

DOI: 10.1016/j.matchemphys.2018.12.042

Google Scholar

[7] J.W. Zhao, S.X. Zhao, X. Wu, H.M. Cheng, C.W. Nan, Double role of silicon in improving the rate performance of LiFePO4 cathode materials, J. Alloys Compd. 699 (2017) 849–855.

DOI: 10.1016/j.jallcom.2016.12.430

Google Scholar

[8] Z.-Y. Chen, H.-L. Zhu, S. Ji, R. Fakir, V. Linkov, Influence of carbon sources on electrochemical performances of LiFePO4/C composites, Solid State Ion. 179 (2008) 1810–1815.

DOI: 10.1016/j.ssi.2008.04.018

Google Scholar

[9] R. Amin, C. Lin, J. Peng, K. Weichert, T. Acartürk, U. Starke, J. Maier, Silicon-doped LiFePO4 single crystals: Growth, conductivity behavior, and diffusivity, Adv. Funct. Mater. 19 (2009) 1697–1704.

DOI: 10.1002/adfm.200801604

Google Scholar