Rolled Supercapacitor Device Model Using Carbon-Sheet as Electrodes in KCl Electrolyte System

Article Preview

Abstract:

Supercapacitor is an electronic device with characteristic of having higher power density than battery and higher energy density than conventional capacitor. In order to achieve exceptional power and energy density, it is necessary to use materials with high specific surface area as its electrodes. In this study, we prepared a rolled supercapacitor device model using carbon sheet as the electrodes and 1 M KCl electrolyte. A carbon sheet was soaked in 1 M KCl and assembled as a rolled supercapacitor device model. Performance of the rolled supercapacitor device model was measured using a cyclic voltammetry (CV) in a voltage range of-0.8 V to +0.1 V with scan rate variations of 1 mV/s, 5 mV/s, 10 mV/s, 15 mV/s and 20 mV/s. Cyclic voltammetry measurement provide results as follows, Esp = 0.289 to 0.103 Wh/kg and Psp = 5.024 to 35.738 W/kg. By using Ragone plot we found that the prepared rolled supercapacitor using carbon-sheet as electrodes had met criteria of supercapacitor. The result show that the carbon sheet has a good prospect to be used as electrodes for rolled supercapacitor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Singh, S. Jain, P.S. Venkateswaran, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Hydrogen: A sustainable fuel for future of the transport sector, Renew. Sustain. Energy Rev. 51 (2015) 623–633.

DOI: 10.1016/j.rser.2015.06.040

Google Scholar

[2] K. Hassmann, H.M. Kühne, Primary energy sources for hydrogen production, Int. J. Hydrogen Energy 18 (1993) 635–640.

DOI: 10.1016/0360-3199(93)90115-q

Google Scholar

[3] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructure materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366–377.

DOI: 10.1038/nmat1368

Google Scholar

[4] X. Du, C. Wang, M. Chen, Y. Jiao, J. Wang, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution, J. Phys. Chem. C 113 (2009) 2643–2646.

DOI: 10.1021/jp8088269

Google Scholar

[5] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources 195 (2010) 7880–7903.

DOI: 10.1016/j.jpowsour.2010.06.036

Google Scholar

[6] A.G. Pandolfo, A.F. Hollenkamp, Review: Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11–27.

DOI: 10.1016/j.jpowsour.2006.02.065

Google Scholar

[7] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.

Google Scholar

[8] W.T. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon and graphene, WIREs Energy Environ. 3 (2014) 424–473.

DOI: 10.1002/wene.102

Google Scholar

[9] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (2011) 4828–4850.

DOI: 10.1002/adma.201100984

Google Scholar

[10] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.

Google Scholar

[11] D.P. Dubal, J.G. Kim, Y. Kim, R. Holze, C.D. Lokhande, W.B. Kim, Supercapacitors based on flexible substrates: An Overview, Energy Technol. 2 (2014) 325–341.

DOI: 10.1002/ente.201300144

Google Scholar

[12] M. Winter, R.J. Brodd, What are batteries, fuel cells and supercapacitors?, Chem. Rev. 104 (2004) 4245–4270.

DOI: 10.1021/cr020730k

Google Scholar

[13] J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651–652.

Google Scholar

[14] C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6 (2006) 2690–2695.

DOI: 10.1021/nl061576a

Google Scholar

[15] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor for efficiency energy storage under extreme environmental temperatures, Nano Energy 8 (2014) 231–237.

DOI: 10.1016/j.nanoen.2014.06.015

Google Scholar

[16] P. B. Karandikar, A. Negi, A. Kumar Pandey, S. Kumar, Comparative study of rolled and stacked type aqueous Supercapacitor, IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (2013) 260–263.

DOI: 10.1109/ghtc-sas.2013.6629927

Google Scholar

[17] P. Cao, Y. Fan, J. Yu, R. Wang, P. Song, Y. Xiong, Polypyrrole nanocomposites doped with functional ionic liquids for high performance supercapacitors, New J. Chem. 42 (2018) 3909–3916.

DOI: 10.1039/c7nj04367h

Google Scholar

[18] L. Zhang, K. Tsay, C. Bock, J. Zhang, Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20oC - 80oC, J. Power Sources 324 (2016) 615–624.

DOI: 10.1016/j.jpowsour.2016.05.008

Google Scholar

[19] Z. Hou, H. Lu, Q. Yang, Q. Zhao, J. Liu, Micromorphology-controlled synthesis of polypyrrole films by using binary surfactant of Span80/OP10 via interfacial polymerization and their enhanced electrochemical capacitance, Electrochem. Acta 265 (2018) 601–608.

DOI: 10.1016/j.electacta.2018.01.164

Google Scholar

[20] L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, C. Yuan, Monodisperse metallic NiCoSe2 hollow sub-microspheres: Formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors, Adv. Funct. Mater. 28 (2018) 1705921.

DOI: 10.1002/adfm.201705921

Google Scholar

[21] B. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Springer Science & Business Media, Berlin, (2013).

Google Scholar

[22] Q. Zhao, J. Chen, F. Luo, L. Shen, Y. Wang, K. Wu, M. Lu, Vertically oriented polyaniline-graphene nanocomposite based on functionalized graphene for supercapacitor electrode, J. Appl. Polym. Sci. 134 (2017) 44808.

DOI: 10.1002/app.44808

Google Scholar

[23] V. Khomenko, E. Frackowiak, F. Béguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochem. Acta 50 (2005) 2499–2506.

DOI: 10.1016/j.electacta.2004.10.078

Google Scholar

[24] X. Gao, J. Jang, and S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms , product structures and reaction design, J. Phys. Chem. C 114 (2010) 832–842.

DOI: 10.1021/jp909284g

Google Scholar

[25] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.

Google Scholar

[26] P. Shang, J. Zhang, W. Tang, Q. Xu, S. Guo, 2D Thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors, Adv. Funct. Mater 26 (2016) 7766–7774.

DOI: 10.1002/adfm.201603504

Google Scholar

[27] J. Zhang, X.S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance, Chem. Sus. Chem 5 (2012) 818–841.

Google Scholar

[28] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937.

DOI: 10.1016/s0008-6223(00)00183-4

Google Scholar

[29] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983–92.

Google Scholar

[30] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, Graphene and graphene oxide: Synthesis, properties and applications, Adv. Mater. 22 (2012) 3906–3924.

DOI: 10.1002/adma.201001068

Google Scholar

[31] D. Krishnan, F. Kim, and J. Luo, Energetic graphene oxide: Challenges and opportunities, Nano Today 7 (2012) 167–152.

Google Scholar

[32] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater. 10 (2011) 424.

DOI: 10.1038/nmat3001

Google Scholar