Microstructure and Impact Load Performance of Friction Stir Welded Joint of AZ31B Magnesium Alloy

Article Preview

Abstract:

10mm thickness AZ31B magnesium alloy was used as the friction stir welding object in this study. Different welding joints were obtained by setting different friction stir welding parameters. Metallographic analysis and impact loading test were carried out on the joint area. The experiment results show that (i) when the rotational speed of the stirring head is 600rpm and the welding speed is 120mm/min, the microstructure of the joint has the characteristics of compactness, thinning, and large-area twinning, which is beneficial to improve the plasticity of the joint area; (ii) the impact load of the joint is the highest, but lower than that of the base material, which is 95.5% of the base material; (iii) the fracture of impact specimen presents ductile fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-62

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. P. Kumar, P. P. Reddy. Non-destructive analysis of FSW process and comparison with simulation and microstructural analysis[J]. Procedia Manufacturing, 2018, 20: 187-194.

DOI: 10.1016/j.promfg.2018.02.027

Google Scholar

[2] S. Y. Eslami, P. J. Tavares, P. M. G. P. Moreira. Fatigue life asseddment of friction stir welded dissimilar polymers[J]. Procedia Structure Integrity, 2017, 5: 1433-1438.

DOI: 10.1016/j.prostr.2017.07.208

Google Scholar

[3] J. M. Lei, S. A. Zhao, S. Z. Wang. Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition[J]. Chinese Journal of Aeronautics, 2016, 29(4): 914-923.

DOI: 10.1016/j.cja.2016.06.006

Google Scholar

[4] Y.W. Wu, R. Bao. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1258-1269.

DOI: 10.1016/j.cja.2016.11.003

Google Scholar

[5] G. M. F. Essa, H. M. Zakria, T. S. Mahmoud, T. A. Khalifa. Microstructure examination and microhardness of friction stir welded joint of (AA7020-O) after PWHT[J]. HBRC Journal, 2018, 14: 22-28.

DOI: 10.1016/j.hbrcj.2015.05.002

Google Scholar

[6] V. Paradiso, F. Rubino, P. Carlone, G. S. Palazzo. Magnesium and aluminum alloys dissimilar joining by friction stir welding[J]. Procedia Engineering, 2017, 183: 239-244.

DOI: 10.1016/j.proeng.2017.04.028

Google Scholar

[7] P. R. Kalvala, J. Akram, M. Misra, D. Ramachandran, J. R. Gabbita. Low temperature friction stir welding of P91 steel[J]. Defence Technology, 2016, (12): 285-289.

DOI: 10.1016/j.dt.2015.11.003

Google Scholar

[8] M. E. Mehtedi, A. Forcellese, L. Panaccio, M. Simoncini. Design of stamping processes of pinless FSWed thin sheets in AA1050 alloy for motomotive applications using FEM[J]. Procedia Engineering, 2017, 183: 213-218.

DOI: 10.1016/j.proeng.2017.04.023

Google Scholar

[9] T. L. Li, X. Q. Yang, Z. S. Wang.Microstructure analysis of AZ 80 friction stir welding[J]. Chinese Journal of Welding Technology, 2013, 42(3): 16-20.

Google Scholar

[10] H. S. Lee, J. H. Yoon, J. Yoo, N. Kookil. Friction stir welding process of aluminum-lithium alloy 2195[J]. Procedia Engineering, 2016, 149: 62-66.

DOI: 10.1016/j.proeng.2016.06.639

Google Scholar

[11] C. Liu,W. J. Qi,Y. L. Deng, N. Zhou,L. Li. Microstructure and properties of friction stir welding joints of cast magesium alloy AZ91D[J]. Chinese Journal of Foundry Technology, 2011, 32(11): 1546-1550.

Google Scholar

[12] G. Q. You , J. C. Zhang , X. J. Wang, Y. Chen. Microstucture of FSW joint of die-casting AZ91D magnesium alloy[J]. Chinese Journal of Materials Engineering, 2012,(5) : 54-59.

Google Scholar

[13] D. J. Liu,R. L. Xin,X. Zheng,Z. Zhou,Q. Liu. Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31[J]. Materials Science and Engineering A, 2013, 561: 419-425.

DOI: 10.1016/j.msea.2012.10.052

Google Scholar

[14] G. Buffa, D. Campanella, R. D. Lorenzo, L. Fratini, G. Ingarao. Analysis of electrical energy demands in friction stir welding of aluminum alloys[J]. Procedia Engineering, 2017, 183:206-212.

DOI: 10.1016/j.proeng.2017.04.022

Google Scholar