Effect of Surface Treatment and Cutting Orientation to the Changes in Stents Surface Roughness

Article Preview

Abstract:

During the implantation process, an expandable balloon stent undergoes a change in mesh shape with a high strain rate. Permanent mesh shape changes to the stents indicate plastic deformation has occurred. On a micro-scale, plastic deformation has significant influence when interacting with the soft tissue of human blood vessels. This experimental study aims to investigate the effect of surface treatment and cutting orientation on the changes in surface roughness that definitely occurs when a stent deployed. To study the effect of surface treatment, two types of surface treatment were applied after surface polishing, i.e. etching and electropolishing. Surface polishing is carried out to enable microscopic observation. As for examining the effect of cutting orientation, the plate is cut in lateral and longitudinal orientation against the predicted-rolling direction of 316L sheet-type of stainless steel. An intermittent tensile test is conducted to obtain information about the changes in surface roughness. The surface observation is carried out three times on a similar surface of testpiece after reaching plastic deformation. The experimental study shows that the orientation of raw material has an insignificant effect on the changes in stent surface roughness. As for the surface treatments, electropolishing tended to decrease the tensile property of material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-133

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhao, J. Humbeeck, J. Sohier, I. De Scheerder, Electrochemical polishing of 316L stainless steel slotted tube coronary stents, 2002. https://doi.org/10.1023/A:1019831808503.

Google Scholar

[2] T. Hryniewicz, R. Rokicki, K. Rokosz, Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, 2008. https://doi.org/10.1016/j.surfcoat. 2007.07.067.

DOI: 10.1016/j.surfcoat.2007.07.067

Google Scholar

[3] T. Mizuno, H. Mulki, Changes in surface texture of zinc-coated steel sheets under plastic deformation, 198 (1996) 176–184.

DOI: 10.1016/0043-1648(96)06963-3

Google Scholar

[4] A. Syaifudin, R. Takeda, K. Sasaki, Effect of balloon shape in treatment of eccentric plaque considering the changes in stent surface roughness, in: Proc. Mech. Eng. Congr., 2014. https://doi.org/10.1299/jsmemecj.2014._S0220204-.

DOI: 10.1299/jsmemecj.2014._s0220204-

Google Scholar

[5] A. Syaifudin, R. Takeda, K. Sasaki, Effects of plaque lengths on stent surface roughness, Biomed. Mater. Eng. 25 (2015) 189–202. https://doi.org/10.3233/BME-151269.

DOI: 10.3233/bme-151269

Google Scholar

[6] A. Syaifudin, K. Sasaki, FEM analysis on balloon expandable stent considering viscoplasticity, (2018) 30022. https://doi.org/10.1063/1.5046257.

DOI: 10.1063/1.5046257

Google Scholar

[7] A. Syaifudin, R. Takeda, K. Sasaki, Development of asymmetric stent for treatment of eccentric plaque, Biomed. Mater. Eng. 29 (2018) 299–317. https://doi.org/10.3233/BME-181737.

DOI: 10.3233/bme-181737

Google Scholar

[8] A. Syaifudin, J.B. Ariatedja, Y. Kaelani, R. Takeda, K. Sasaki, Vulnerability analysis on the interaction between Asymmetric stent and arterial layer, Biomed. Mater. Eng. 30 (2019) 309–322. https://doi.org/10.3233/BME-191054.

DOI: 10.3233/bme-191054

Google Scholar

[9] C.M. Wichern, B.C. De Cooman, C.J. Van Tyne, Surface roughness changes on a hot-dipped galvanized sheet steel during deformation at low strain levels, Acta Mater. 52 (2004) 1211–1222. https://doi.org/https://doi.org/10.1016/j.actamat.2003.11.005.

DOI: 10.1016/j.actamat.2003.11.005

Google Scholar

[10] H.A. Al-Qureshi, A.N. Klein, M.C. Fredel, Grain size and surface roughness effect on the instability strains in sheet metal stretching, J. Mater. Process. Technol. 170 (2005) 204–210. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2005.04.116.

DOI: 10.1016/j.jmatprotec.2005.04.116

Google Scholar

[11] O. Wouters, W.P. Vellinga, R. Van Tijum, J.T.M. de Hosson, On the evolution of surface roughness during deformation of polycrystalline aluminum alloys, Acta Mater. 53 (2005) 4043–4050. https://doi.org/https://doi.org/10.1016/j.actamat.2005.05.007.

DOI: 10.1016/j.actamat.2005.05.007

Google Scholar

[12] P. Poncin, C. Millet, J. Chevy, J. Proft, Comparing and optimizing Co-Cr tubing for stent applications, Mater Process. Med. Devices Conf. (2004) 25–27.

Google Scholar

[13] P. Poncin, Stent Tubing: Understanding the Desired Attributes, in: Mater. Process. Med. Devices, 2003. http://www.minitubes.com/wp-content/uploads/2016/04/Stent-Tubing-Understanding-the-Desired-Attributes-.pdf (accessed July 13, 2019).

Google Scholar

[14] J. Jung, S. Jun, H.-S. Lee, B.-M. Kim, M.-G. Lee, J. Kim, Anisotropic Hardening Behaviour and Springback of Advanced High-Strength Steels, Metals (Basel). 7 (2017) 480. https://doi.org/10.3390/met7110480.

DOI: 10.3390/met7110480

Google Scholar

[15] K. Li, J. Peng, J. Peng, Mechanical Behavior of 316L Stainless Steel after Strain Hardening, MATEC Web Conf. 114 (2017) 02003. https://doi.org/10.1051/matecconf/201711402003.

DOI: 10.1051/matecconf/201711402003

Google Scholar

[16] F. Qayyum, M. Shah, A. Muqeet, J. Afzal, The effect of anisotropy on the intermediate and final form in deep drawing of SS304L, with high draw ratios: Experimentation and numerical simulation, IOP Conf. Ser. Mater. Sci. Eng. 146 (2016). https://doi.org/10.1088/1757-899X/146/1/012031.

DOI: 10.1088/1757-899x/146/1/012031

Google Scholar

[17] R. Padmanabhan, A.J. Baptista, M.C. Oliveira, L.F. Menezes, Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks, J. Mater. Process. Technol. 184 (2007) 288–293. https://doi.org/10.1016/j.jmatprotec.2006.11.051.

DOI: 10.1016/j.jmatprotec.2006.11.051

Google Scholar

[18] T. Trzepiecinski, H.G. Lemu, Study of material anisotropy in metal forming using finite element methods, Anisotropy Res. New Dev. (2012).

Google Scholar

[19] ASTM International, Standard Test Methods for Tension Testing of Metallic Materials, in: ASTM E8-13, 2013. https://doi.org/10.1520/E0008.

Google Scholar

[20] Japanese Industrial Standard, Test pieces for tensile test for metallic materials, in: JIS Z 2201, (1998).

Google Scholar

[21] A. Syaifudin, Deformation Analysis of Balloon-Expandable Stents Considering Its Surface Roughness and Viscoplasticity, 2013. https://www.eng.hokudai.ac.jp/e3/alumni/files/abstract/ m192.pdf.

Google Scholar

[22] W. Ghennai, O. Boussaid, H. Bendjama, B. Haddag, M. Nouari, Experimental and numerical study of DC04 sheet metal behaviour-plastic anisotropy identification and application to deep drawing, (n.d.). https://doi.org/10.1007/s00170-018-2700-8.

DOI: 10.1007/s00170-018-2700-8

Google Scholar

[23] Z.E. Gellér, K. Albrecht, J. Dobránszky, Electropolishing of Coronary Stents, Mater. Sci. Forum. 589 (2009) 367–372. https://doi.org/10.4028/www.scientific.net/msf.589.367.

DOI: 10.4028/www.scientific.net/msf.589.367

Google Scholar

[24] P. Sojitra, C. Engineer, D. Kothwala, A. Raval, H. Kotadia, G. Mehta, Electropolishing of 316LVM stainless steel cardiovascular stents: An investigation of material removal, surface roughness and corrosion behaviour, Trends Biomater. Artif. Organs. 23 (2010) 115–121.

Google Scholar

[25] R. Amaral, P. Teixeira, E. Azinpour, A.D. Santos, J. Cesar De Sa, Evaluation of ductile failure models in Sheet Metal Forming, (n.d.). https://pdfs.semanticscholar.org/757b/f58c67192b160dec06fb0f3a667ffdb0b491.pdf?_ga=2.106824579.1088945445.1566018736-697992882.1561362118 (accessed August 17, 2019).

DOI: 10.1051/matecconf/20168003004

Google Scholar

[26] G. Çinar, Effects of Anisotropy on Formability in Sheet Metal Forming, (2006) 2–24.

Google Scholar

[27] L.M. Weldon, P.E. Mchugh, W. Carroll, E. Costello, C. O'bradaigh, The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading, (n.d.). https://link.springer.com/content/pdf/10.1007%2Fs10856-005-5922-x.pdf (accessed August 17, 2019).

DOI: 10.1007/s10856-005-5922-x

Google Scholar