Fabrication Membrane of Titanium dioxide (TiO2) Blended Polyethersulfone (PES) and Polyvinilidene fluoride (PVDF): Characterization, Mechanical Properties and Water Treatment

Article Preview

Abstract:

In this research, Polyethersulfone (PES) and Polyvinylidene Fluoride (PVDF) with the addition of a Titanium Dioxide (TiO2) blanded membrane were prepared using the DC 15000 V electric field method. The investigation of this research is the adding result of Titanium Dioxide (TiO2) with the DC 15000 V electric field methos such as the mechanical properties of membranes and water treatment performance. The surface mixture of Polyethersulfone (PES) and Polyvinylidene Fluoride (PVDF) membranes is characterized using SEM, the membrane pore size shrinks and forms evenly with the addition of Titanium Dioxide (TiO2) and DC electric field methods. Tensile tests were carried out to obtain the mechanical properties of Polyethersulfone (PES) and Polyvinylidene Fluoride (PVDF) by adding Titanium Dioxide (TiO2) mixture membrane, which showed an increase in optimal tensile strength to 3.86 MPa at a concentration of 30% Polyethersulfone (PES) and also increased to 1.15 MPa at 20% Polyvinylidene Fluoride (PVDF). The membrane surface was examined using contact angle measurements, which in the mixed membrane Polyethersulfone (PES) and Polyvinylidene Fluoride (PVDF) showed a decrease in the angle between the range of 43o - 46o. Therefore, hydrophilicity makes it possible to suppress the permeate flux of pure water. Making membranes with the addition of Titanium Dioxide (TiO2), and assisted by DC electric fields opens up new ways to increase membrane strength, hydrophilicity, shrink and make pore sizes evenly formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-165

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L. Ahmad, J. Sugumaran, and N. F. Shoparwe, Antifouling Properties of PES Membranes by Blending with ZnO Nanoparticles and NMP–Acetone Mixture as Solvent,, Membranes (Basel)., vol. 8, no. 4, p.131, (2018).

DOI: 10.3390/membranes8040131

Google Scholar

[2] CNN Indonesia, PBB: Dunia dalam Bahaya Krisis Air Global,, CNN Indonesia, p.1, (2018).

Google Scholar

[3] R. B. Fitradi, Preparasi dan Modifikasi Membran untuk Pengolahan Air,, no. 10, p.1–15, (2015).

Google Scholar

[4] G. dong Kang and Y. ming Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review,, J. Memb. Sci., vol. 463, p.145–165, (2014).

DOI: 10.1016/j.memsci.2014.03.055

Google Scholar

[5] J. P. Méricq, J. Mendret, S. Brosillon, and C. Faur, High performance PVDF-TiO2 membranes for water treatment,, Chem. Eng. Sci., vol. 123, p.283–291, (2015).

DOI: 10.1016/j.ces.2014.10.047

Google Scholar

[6] S. Gee, B. Johnson, and A. L. Smith, Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes,, J. Memb. Sci., vol. 563, no. February, p.804– 812, (2018).

DOI: 10.1016/j.memsci.2018.06.050

Google Scholar

[7] C. Zhao, J. Xue, F. Ran, and S. Sun, Modification of polyethersulfone membranes - A review of methods,, Prog. Mater. Sci., vol. 58, no. 1, p.76–150, (2013).

Google Scholar

[8] S. Mallick, Z. Ahmad, F. Touati, and R. A. Shakoor, Improvement of humidity sensing properties of PVDF-TiO 2 nanocomposite films using acetone etching,, Sensors Actuators, B Chem., p.408–413, (2019).

DOI: 10.1016/j.snb.2019.03.034

Google Scholar

[9] H. T. Bhatti et al., Graphene Oxide-PES-Based Mixed Matrix Membranes for Controllable Antibacterial Activity against Salmonella typhi and Water Treatment,, Int. J. Polym. Sci., vol. 2018, (2018).

Google Scholar

[10] T. Bae, I. Kim, and T. Tak, Preparation and characterization of fouling-resistant TiO 2 self- assembled nanocomposite membranes,, vol. 275, p.1–5, (2006).

DOI: 10.1016/j.memsci.2006.01.023

Google Scholar

[11] J. Wang, Y. Wang, J. Zhu, Y. Zhang, J. Liu, and B. Van der Bruggen, Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance,, J. Memb. Sci., vol. 533, no. March, p.279–288, (2017).

DOI: 10.1016/j.memsci.2017.03.040

Google Scholar

[12] M. Safarpour, A. Khataee, and V. Vatanpour, Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties,, Ind. Eng. Chem. Res., vol. 53, no. 34, p.13370–13382, (2014).

DOI: 10.1021/ie502407g

Google Scholar

[13] S. J. Oh, N. Kim, and Y. T. Lee, Preparation and characterization of PVDF/TiO2 organic- inorganic composite membranes for fouling resistance improvement,, J. Memb. Sci., vol. 345, no. 1–2, p.13–20, (2009).

DOI: 10.1016/j.memsci.2009.08.003

Google Scholar

[14] X. Wang, M. Feng, Y. Liu, H. Deng, and J. Lu, Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance,, J. Memb. Sci., p.41–50, (2019).

DOI: 10.1016/j.memsci.2019.01.055

Google Scholar

[15] S. M. Seyed Shahabadi, H. Rabiee, S. M. Seyedi, A. Mokhtare, and J. A. Brant, Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co- hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation,, J. Memb. Sci., vol. 537, no. December 2016, p.140–150, (2017).

DOI: 10.1016/j.memsci.2017.05.039

Google Scholar

[16] V. Vatanpour, S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, and H. A. Monfared, TiO 2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance,, Desalination, vol. 292, p.19– 29, (2012).

DOI: 10.1016/j.desal.2012.02.006

Google Scholar

[17] H. Rawindran et al., Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO 2 photocatalytic membrane,, J. Clean. Prod., vol. 221, p.490–501, (2019).

DOI: 10.1016/j.jclepro.2019.02.230

Google Scholar

[18] M. L. Luo, J. Q. Zhao, W. Tang, and C. S. Pu, Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO 2 nanoparticles,, Appl. Surf. Sci., vol. 249, no. 1–4, p.76–84, (2005).

DOI: 10.1016/j.apsusc.2004.11.054

Google Scholar

[19] C. S. Ong, W. J. Lau, P. S. Goh, B. C. Ng, and A. F. Ismail, Preparation and characterization of PVDF–PVP–TiO2composite hollow fiber membranes for oily wastewater treatment using submerged membrane system,, Desalin. Water Treat., vol. 53, no. 5, p.1213–1223, (2015).

DOI: 10.1080/19443994.2013.855679

Google Scholar

[20] M. Safarpour, A. Khataee, and V. Vatanpour, Effect of reduced graphene oxide / TiO 2 nanocomposite with different molar,, Sep. Purif. Technol., (2014).

Google Scholar