[1]
N. G. C. Barbosa, R. D. S. G. Campilho, F. J. G. Silva, and R. D. F. Moreira, Comparison of different adhesively-bonded joint types for mechanical structures,, Appl. Adhes. Sci., vol. 6, no. 1, Dec. 2018,.
DOI: 10.1186/s40563-018-0116-1
Google Scholar
[2]
A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, Effect of silica nanoparticles on compressive properties of an epoxy polymer,, J. Mater. Sci., vol. 45, no. 21, p.5973–5983, Nov. 2010,.
DOI: 10.1007/s10853-010-4683-1
Google Scholar
[3]
Yohanes and Y. Sekiguchi, Effects of mixed micro and nano silica particles on the dynamic compressive performances of epoxy adhesive,, Appl. Adhes. Sci., vol. 5, no. 1, p.3, Dec. 2017,.
DOI: 10.1186/s40563-017-0083-y
Google Scholar
[4]
Yohanes and Y. Sekiguchi, Synergistic Effects of Mixed Silica Micro-nanoparticles on Compressive Dynamic Stiffness and Damping of Epoxy Adhesive,, J. Dyn. Behav. Mater., Mar. 2018,.
DOI: 10.1007/s40870-018-0148-4
Google Scholar
[5]
G. Challita, R. Othman, and K. Khalil, Compression and shear behavior of epoxy SA 80 bulk adhesive over wide ranges of strain rate,, J. Polym. Eng., vol. 36, no. 2, Jan. 2016,.
DOI: 10.1515/polyeng-2015-0062
Google Scholar
[6]
T. Yokoyama and K. Nakai, Determination of the impact tensile strength of structural adhesive butt joints with a modified split Hopkinson pressure bar,, Int. J. Adhes. Adhes., vol. 56, p.13–23, Jan. 2015,.
DOI: 10.1016/j.ijadhadh.2014.07.011
Google Scholar
[7]
M. D. Banea, L. F. M. da Silva, and R. D. S. G. Campilho, The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive,, J. Adhes., vol. 91, no. 5, p.331–346, May 2015,.
DOI: 10.1080/00218464.2014.903802
Google Scholar
[8]
L. Liao, C. Huang, and T. Sawa, Effect of adhesive thickness, adhesive type and scarf angle on the mechanical properties of scarf adhesive joints,, Int. J. Solids Struct., vol. 50, no. 25–26, p.4333–4340, Dec. 2013,.
DOI: 10.1016/j.ijsolstr.2013.09.005
Google Scholar
[9]
L. F. M. Silva, T. N. S. S. Rodrigues, M. de Figueiredo, M. De Moura, and J. A. G. Chousal, Effect of Adhesive Type and Thickness on the Lap Shear Strength,, J. Adhes., vol. 82, p.1091–1115, Nov. 2006,.
DOI: 10.1080/00218460600948511
Google Scholar
[10]
P. Davies et al., Influence of adhesive bond line thickness on joint strength,, Int. J. Adhes. Adhes., vol. 29, no. 7, p.724–736, Oct. 2009,.
Google Scholar
[11]
R. Kahraman, M. Sunar, and B. Yilbas, Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive,, J. Mater. Process. Technol., vol. 205, no. 1–3, p.183–189, Aug. 2008,.
DOI: 10.1016/j.jmatprotec.2007.11.121
Google Scholar
[12]
M. Imanaka and T. Iwata, Effect of adhesive layer thickness on fatigue strength of adhesively bonded butt, scarf and butterfly type butt joints,, Int. J. Fract., vol. 80, no. 4, pp. R69–R76, (1996).
DOI: 10.1007/bf00018518
Google Scholar
[13]
T. Sawa, T. Nagai, T. Iwamoto, and H. Kuramoto, A study on evaluation of impact strength of adhesive joints subjected to impact shear loadings,, presented at the ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2009, vol. 15, p.55–61,.
DOI: 10.1115/imece2008-68464
Google Scholar
[14]
Sugiman, I. Akbar, E. D. Sulistyowati, and P. D. Setyawan, Effect of Adhesive Layer Thickness on the Shear Strength of Adhesively Bonded Steel Joints in Wet Environment,, Applied Mechanics and Materials, 2016. [Online]. Available: https://www.scientific.net/AMM.836.78. [Accessed: 12-Aug-2019].
DOI: 10.4028/www.scientific.net/amm.836.78
Google Scholar
[15]
A. R. Abdullah, M. Afendi, and M. S. A. Majid, Effect of adhesive thickness on adhesively bonded T-joint,, IOP Conf. Ser. Mater. Sci. Eng., vol. 50, p.012063, Dec. 2013,.
DOI: 10.1088/1757-899x/50/1/012063
Google Scholar
[16]
T. Yokoyama, K. Nakai, and N. H. M. Yatim, High Strain-Rate Compressive Stress-Strain Loops for Structural Adhesive,, Appl. Mech. Mater., vol. 83, p.130–135, Jul. 2011,.
DOI: 10.4028/www.scientific.net/amm.83.130
Google Scholar
[17]
K. Nakai and T. Yokoyama, Strain rate dependence of compressive stress-strain loops of several polymers,, J. Solid Mech. Mater. Eng., vol. 2, no. 4, p.557–566, (2008).
DOI: 10.1299/jmmp.2.557
Google Scholar
[18]
T. E. Tay, H. G. Ang, and V. P. W. Shim, An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy,, Compos. Struct., vol. 33, no. 4, p.201–210, 1995,.
DOI: 10.1016/0263-8223(95)00116-6
Google Scholar
[19]
A. T. Owens and H. V. Tippur, A Tensile Split Hopkinson Bar for Testing Particulate Polymer Composites Under Elevated Rates of Loading,, Exp. Mech., vol. 49, no. 6, p.799–811, Dec. 2009,.
DOI: 10.1007/s11340-008-9192-7
Google Scholar
[20]
M. M. Shokrieh, R. Mosalmani, and M. J. Omidi, A strain-rate dependent micromechanical constitutive model for glass/epoxy composites,, Compos. Struct., vol. 121, p.37–45, Mar. 2015,.
DOI: 10.1016/j.compstruct.2014.10.035
Google Scholar
[21]
K. V. Massenhove, D. Vandepitte, and S. Debruyne, Strength and stiffness variability study of viscoelastic adhesive butt joints,, J. Adhes., vol. 95, no. 5–7, p.350–368, Jun. 2019,.
DOI: 10.1080/00218464.2018.1563545
Google Scholar
[22]
L. Liao and C. Huang, Numerical analysis of effects of adhesive type and geometry on mixed-mode failure of adhesive joint,, Int. J. Adhes. Adhes., vol. 68, p.389–396, Jul. 2016,.
DOI: 10.1016/j.ijadhadh.2015.12.013
Google Scholar