Correlation of Holding Time and Bottom Ash Particle Size to Mechanical Properties of Polypropylene Composite

Article Preview

Abstract:

The impact of holding time and particle size of bottom ash on the mechanical properties of polypropylene composites has been investigated. The size of the used particle were 200-250, 250-300, and 300-350 mesh with the holding time variations were 0, 30, 60, and 90 minutes. The initial process of the bottom ash was cleaned with fresh and warm water, then drained and dried at a 120°C for 3 hours. In the making process of composites, the bottom ash was mixed into the polypropylene matrix by stirring at a speed of 20 rpm for 30 minutes. The results of this study showed that the highest composite strength values were obtained in composites with the particle size of 250-300 mesh. Tensile strength increased about 45% for composites without providing holding time (0 minutes), while the bending strength value increased significantly to 103% obtained on composites given a holding time of 30 minutes. The results of this study will be used as a basis for further research and hopes of getting better alternative engineering materials in the form of composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-181

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Wang, A. Lowe, and S. Kalyanasundaram, Effect of chemical treatments on flax fibre reinforced polypropylene composites on tensile and dome forming behaviour,, Int. J. Mol. Sci., vol. 16, no. 3, p.6202–6216, (2015).

DOI: 10.3390/ijms16036202

Google Scholar

[2] K. L. Pickering, M. G. A. Efendy, and T. M. Le, Composites : A review of recent developments in natural fibre composites and their mechanical performance,, Composites, vol. Part A 83, p.98–112, (2016).

DOI: 10.1016/j.compositesa.2015.08.038

Google Scholar

[3] I. D. Ibrahim, T. Jamiru, E. R. Sadiku, W. K. Kupolati, S. C. Agwuncha, and G. Ekundayo, Mechanical properties of sisal fibre-reinforced polymer composites: A review,, Compos. Interfaces, vol. 23, no. 1, p.15–36, (2016).

DOI: 10.1080/09276440.2016.1087247

Google Scholar

[4] S. L. Bai, C. M. L. Wu, Y. W. Mai, H. M. Zeng, and R. K. Y. Li, Failure mechanisms of sisal fibres in composites,, Adv. Compos. Lett., vol. 8, no. 1, p.13–17, (1999).

Google Scholar

[5] N. Abilash and M. Sivapragash, Tensile and Compressive Behaviour of Treated Sisal and Jute Fiber Blended Polypropylene Composite,, J. Polym. Biopolym. Phys. Chem., vol. 1, no. 1, p.1–8, (2013).

Google Scholar

[6] A. K. Bledzki, A. A. Mamun, and J. Volk, Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties,, Compos. Sci. Technol., vol. 70, no. 5, p.840–846, (2010).

DOI: 10.1016/j.compscitech.2010.01.022

Google Scholar

[7] B. Alcock, N. O. Cabrera, N. M. Barkoula, and T. Peijs, Direct forming of all-polypropylene composites products from fabrics made of Co-extruded tapes,, Appl. Compos. Mater., vol. 16, no. 2, p.117–134, (2009).

DOI: 10.1007/s10443-009-9081-y

Google Scholar

[8] D. Y. Shitov, T. . Kravchenk, V. . Osipchik, and E. . Rakov, Composite materials based on polypropylene with carbon nanofillers,, Int. Polym. Sci. Technol., vol. 40, no. 10, p.29–32, (2014).

DOI: 10.1177/0307174x1404100907

Google Scholar

[9] M. Hou, Stamp forming of fabric reinforced thermoplastic composites,, Polym. Compos., vol. 17, no. 4, p.596–603, (1996).

DOI: 10.1002/pc.10649

Google Scholar

[10] D. Silva, J. Antônio, S. Costa, and P. S. De, Characterization of Sisal Fibers for use as Reinforcement in Polymer Composites,, Int. J. Eng. Innov. Technol., vol. 4, no. 8, p.70–75, (2015).

Google Scholar

[11] J. Gummadi, G. V. Kumar, and G. Rajesh, Evaluation of Flexural Properties of Fly Ash Filled Polypropylene Composites,, Int. J. Mod. Eng. Res., vol. 2, no. 4, p.2584–2590, (2012).

Google Scholar

[12] R. S. N. Sahai and N. Pawar, Studies on Mechanical Properties of Fly Ash Filled PPO Composite with Coupling Agent,, Int. J. Chem. Environ. Biol. Sci., vol. 2, no. 4, p.188–192, (2014).

Google Scholar

[13] D. C. D. Nath, S. Bandyopadhyay, A. Yu, D. Blackburn, and C. White, Correlation of mechanical and structural properties of fly ash filled-isotactic polypropylene composites,, in 3rd World of Coal Ash, WOCA Conference - Proceedings, (2009).

DOI: 10.1007/s10853-009-3839-3

Google Scholar

[14] P. V Joseph, K. Joseph, and S. Thomas, Effect of processing variables on the mechanical properties of sisal- fiber-reinforced polypropylene composites,, Compos. Sci. Technol., vol. 59, p.1625–1640, (1999).

DOI: 10.1016/s0266-3538(99)00024-x

Google Scholar

[15] N. I. R. Ramzi hannan, S. Shahidan, N. Ali, and M. Z. Maarof, A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material,, MATEC Web Conf., vol. 103, p.1–10, (2017).

DOI: 10.1051/matecconf/201710301005

Google Scholar

[16] N. I. R. Ramzi, S. Shahidan, M. Z. Maarof, and N. Ali, Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant,, IOP Conf. Ser. Mater. Sci. Eng., vol. 160, no. 1, (2016).

DOI: 10.1088/1757-899x/160/1/012056

Google Scholar

[17] I. Yamamoto, T. Higashihara, and T. Kobayashi, Effect of silica-particle characteristics on impact/usual fatigue properties and evaluation of mechanical characteristics of silica-particle epoxy resins,, JSME International Journal, Series A: Solid Mechanics and Material Engineering, vol. 46, no. 2. p.145–153, (2003).

DOI: 10.1299/jsmea.46.145

Google Scholar

[18] A. Patnaik, A. Satapathy, and S. S. Mahapatra, Study on erosion response of hybrid composites using Taguchi experimental design,, J. Eng. Mater. Technol. Trans. ASME, vol. 131, no. 3, p.0310111–03101116, (2009).

DOI: 10.1115/1.3086334

Google Scholar

[19] C. H. Benson and S. Bradshaw, User Guideline for Coal Bottom Ash and Boiler Slag in Green Infrastructure Construction,, Recycl. Mater. Resour. Cent., vol. 1, no. 12, p.1–32, (2011).

Google Scholar

[20] C. W. Lovell, T. C. Ke, W. H. Huang, and J. E. Lovell, Bottom ash as highway material,, Transp. Res. Rec. 1310, p.125, (1991).

Google Scholar

[21] M. P. Kadam and D. Y. D. Patil, Effect of Coal Bottom Ash As Sand Replacement on the Properties of Concrete With Different W/C Ratio,, Int. J. Adv. Technol. Civ. Eng., no. 21, p.2231–5721, (2013).

DOI: 10.47893/ijatce.2013.1049

Google Scholar

[22] R. S. Raja, K. Manisekar, and V. Manikandan, Effect of fly ash filler size on mechanical properties of polymer matrix composites,, Int. J. Mining, Metall. Mech. Eng., vol. 1, no. 1, p.34–38, (2013).

Google Scholar

[23] R. Satheesh Raja, K. Manisekar, and V. Manikandan, Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis,, Mater. Des., vol. 55, p.499–508, (2014).

DOI: 10.1016/j.matdes.2013.10.026

Google Scholar

[24] S. Ojha, S. K. Acharya, and G. Raghavendra, Mechanical Properties of Natural Carbon Black Reinforced Polymer Composites,, vol. 41211, p.1–7, (2015).

DOI: 10.1002/app.41211

Google Scholar

[25] Z. S. Petrović, B. Martinović, V. Divjaković, and J. Budinski–Simendić, Polypropylene–Carbon black interaction in conductive composites,, J. Appl. Polym. Sci., vol. 49, no. 9, p.1659–1669, (1993).

DOI: 10.1002/app.1993.070490919

Google Scholar

[26] V. Manikandan, S. Richard, M. Chithambara Thanu, and J. S. Rajadurai, Effect of Fly Ash As Filler on Mechanical & Frictional Properties of Jute Fiber Reinforced Composite,, Int. Res. J. Eng. Technol., no. October, p.2395–56, (2015).

Google Scholar

[27] S. Mishra and N. G. Shimpi, Comparison of nano CaCO3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,, J. Sci. Ind. Res. (India)., vol. 64, no. 10, p.744–751, (2005).

Google Scholar

[28] N. Saleh and S. Mustafa, A study of some mechanical, thermal and physical properties of polymer blend with Iraqi kaolin filler,, Eng. Technol. J., vol. 29, no. 11, p.2114–2132, (2011).

Google Scholar

[29] H. Y. Kim, J. W. Choi, Y. C. Chung, and B. C. Chun, Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites,, Mater Cycles Waste Manag, vol. 17, no. 4, p.781–789, (2014).

DOI: 10.1007/s10163-014-0311-5

Google Scholar

[30] R. S. N. Sahai and P. A. Mahanwar, Effect of Particle Size and Concentration of Fly Ash on Mechanical Properties of Polyphenylene Oxide Composites,, Int. J. Chem. Environ. Biol. Sci., vol. 3, no. 2, p.164–168, (2015).

Google Scholar

[31] J. M. Salman, Studying Some Properties of Unsaturated Polyester Composite Reinforced by Carbon Black Particulate,, J. Babylon Univ. Sci. No, no. 223, p.2011–2015, (2015).

Google Scholar

[32] M. Akay, Introduction to Polymer Science and Technology. Mustafa Akay & ventus Publishing apS, (2012).

Google Scholar

[33] S. H. Yetkin, H. Unal, A. Mimaroglu, and F. Findik, Influence of Process Parameters on the Mechanical and Foaming Properties of PP Polymer and PP/TALC/EPDM Composites,, Polym. - Plast. Technol. Eng., vol. 52, no. 5, p.433–439, (2013).

DOI: 10.1080/03602559.2012.748802

Google Scholar