[1]
W. Wang, A. Lowe, and S. Kalyanasundaram, Effect of chemical treatments on flax fibre reinforced polypropylene composites on tensile and dome forming behaviour,, Int. J. Mol. Sci., vol. 16, no. 3, p.6202–6216, (2015).
DOI: 10.3390/ijms16036202
Google Scholar
[2]
K. L. Pickering, M. G. A. Efendy, and T. M. Le, Composites : A review of recent developments in natural fibre composites and their mechanical performance,, Composites, vol. Part A 83, p.98–112, (2016).
DOI: 10.1016/j.compositesa.2015.08.038
Google Scholar
[3]
I. D. Ibrahim, T. Jamiru, E. R. Sadiku, W. K. Kupolati, S. C. Agwuncha, and G. Ekundayo, Mechanical properties of sisal fibre-reinforced polymer composites: A review,, Compos. Interfaces, vol. 23, no. 1, p.15–36, (2016).
DOI: 10.1080/09276440.2016.1087247
Google Scholar
[4]
S. L. Bai, C. M. L. Wu, Y. W. Mai, H. M. Zeng, and R. K. Y. Li, Failure mechanisms of sisal fibres in composites,, Adv. Compos. Lett., vol. 8, no. 1, p.13–17, (1999).
Google Scholar
[5]
N. Abilash and M. Sivapragash, Tensile and Compressive Behaviour of Treated Sisal and Jute Fiber Blended Polypropylene Composite,, J. Polym. Biopolym. Phys. Chem., vol. 1, no. 1, p.1–8, (2013).
Google Scholar
[6]
A. K. Bledzki, A. A. Mamun, and J. Volk, Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties,, Compos. Sci. Technol., vol. 70, no. 5, p.840–846, (2010).
DOI: 10.1016/j.compscitech.2010.01.022
Google Scholar
[7]
B. Alcock, N. O. Cabrera, N. M. Barkoula, and T. Peijs, Direct forming of all-polypropylene composites products from fabrics made of Co-extruded tapes,, Appl. Compos. Mater., vol. 16, no. 2, p.117–134, (2009).
DOI: 10.1007/s10443-009-9081-y
Google Scholar
[8]
D. Y. Shitov, T. . Kravchenk, V. . Osipchik, and E. . Rakov, Composite materials based on polypropylene with carbon nanofillers,, Int. Polym. Sci. Technol., vol. 40, no. 10, p.29–32, (2014).
DOI: 10.1177/0307174x1404100907
Google Scholar
[9]
M. Hou, Stamp forming of fabric reinforced thermoplastic composites,, Polym. Compos., vol. 17, no. 4, p.596–603, (1996).
DOI: 10.1002/pc.10649
Google Scholar
[10]
D. Silva, J. Antônio, S. Costa, and P. S. De, Characterization of Sisal Fibers for use as Reinforcement in Polymer Composites,, Int. J. Eng. Innov. Technol., vol. 4, no. 8, p.70–75, (2015).
Google Scholar
[11]
J. Gummadi, G. V. Kumar, and G. Rajesh, Evaluation of Flexural Properties of Fly Ash Filled Polypropylene Composites,, Int. J. Mod. Eng. Res., vol. 2, no. 4, p.2584–2590, (2012).
Google Scholar
[12]
R. S. N. Sahai and N. Pawar, Studies on Mechanical Properties of Fly Ash Filled PPO Composite with Coupling Agent,, Int. J. Chem. Environ. Biol. Sci., vol. 2, no. 4, p.188–192, (2014).
Google Scholar
[13]
D. C. D. Nath, S. Bandyopadhyay, A. Yu, D. Blackburn, and C. White, Correlation of mechanical and structural properties of fly ash filled-isotactic polypropylene composites,, in 3rd World of Coal Ash, WOCA Conference - Proceedings, (2009).
DOI: 10.1007/s10853-009-3839-3
Google Scholar
[14]
P. V Joseph, K. Joseph, and S. Thomas, Effect of processing variables on the mechanical properties of sisal- fiber-reinforced polypropylene composites,, Compos. Sci. Technol., vol. 59, p.1625–1640, (1999).
DOI: 10.1016/s0266-3538(99)00024-x
Google Scholar
[15]
N. I. R. Ramzi hannan, S. Shahidan, N. Ali, and M. Z. Maarof, A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material,, MATEC Web Conf., vol. 103, p.1–10, (2017).
DOI: 10.1051/matecconf/201710301005
Google Scholar
[16]
N. I. R. Ramzi, S. Shahidan, M. Z. Maarof, and N. Ali, Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant,, IOP Conf. Ser. Mater. Sci. Eng., vol. 160, no. 1, (2016).
DOI: 10.1088/1757-899x/160/1/012056
Google Scholar
[17]
I. Yamamoto, T. Higashihara, and T. Kobayashi, Effect of silica-particle characteristics on impact/usual fatigue properties and evaluation of mechanical characteristics of silica-particle epoxy resins,, JSME International Journal, Series A: Solid Mechanics and Material Engineering, vol. 46, no. 2. p.145–153, (2003).
DOI: 10.1299/jsmea.46.145
Google Scholar
[18]
A. Patnaik, A. Satapathy, and S. S. Mahapatra, Study on erosion response of hybrid composites using Taguchi experimental design,, J. Eng. Mater. Technol. Trans. ASME, vol. 131, no. 3, p.0310111–03101116, (2009).
DOI: 10.1115/1.3086334
Google Scholar
[19]
C. H. Benson and S. Bradshaw, User Guideline for Coal Bottom Ash and Boiler Slag in Green Infrastructure Construction,, Recycl. Mater. Resour. Cent., vol. 1, no. 12, p.1–32, (2011).
Google Scholar
[20]
C. W. Lovell, T. C. Ke, W. H. Huang, and J. E. Lovell, Bottom ash as highway material,, Transp. Res. Rec. 1310, p.125, (1991).
Google Scholar
[21]
M. P. Kadam and D. Y. D. Patil, Effect of Coal Bottom Ash As Sand Replacement on the Properties of Concrete With Different W/C Ratio,, Int. J. Adv. Technol. Civ. Eng., no. 21, p.2231–5721, (2013).
DOI: 10.47893/ijatce.2013.1049
Google Scholar
[22]
R. S. Raja, K. Manisekar, and V. Manikandan, Effect of fly ash filler size on mechanical properties of polymer matrix composites,, Int. J. Mining, Metall. Mech. Eng., vol. 1, no. 1, p.34–38, (2013).
Google Scholar
[23]
R. Satheesh Raja, K. Manisekar, and V. Manikandan, Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis,, Mater. Des., vol. 55, p.499–508, (2014).
DOI: 10.1016/j.matdes.2013.10.026
Google Scholar
[24]
S. Ojha, S. K. Acharya, and G. Raghavendra, Mechanical Properties of Natural Carbon Black Reinforced Polymer Composites,, vol. 41211, p.1–7, (2015).
DOI: 10.1002/app.41211
Google Scholar
[25]
Z. S. Petrović, B. Martinović, V. Divjaković, and J. Budinski–Simendić, Polypropylene–Carbon black interaction in conductive composites,, J. Appl. Polym. Sci., vol. 49, no. 9, p.1659–1669, (1993).
DOI: 10.1002/app.1993.070490919
Google Scholar
[26]
V. Manikandan, S. Richard, M. Chithambara Thanu, and J. S. Rajadurai, Effect of Fly Ash As Filler on Mechanical & Frictional Properties of Jute Fiber Reinforced Composite,, Int. Res. J. Eng. Technol., no. October, p.2395–56, (2015).
Google Scholar
[27]
S. Mishra and N. G. Shimpi, Comparison of nano CaCO3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,, J. Sci. Ind. Res. (India)., vol. 64, no. 10, p.744–751, (2005).
Google Scholar
[28]
N. Saleh and S. Mustafa, A study of some mechanical, thermal and physical properties of polymer blend with Iraqi kaolin filler,, Eng. Technol. J., vol. 29, no. 11, p.2114–2132, (2011).
Google Scholar
[29]
H. Y. Kim, J. W. Choi, Y. C. Chung, and B. C. Chun, Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites,, Mater Cycles Waste Manag, vol. 17, no. 4, p.781–789, (2014).
DOI: 10.1007/s10163-014-0311-5
Google Scholar
[30]
R. S. N. Sahai and P. A. Mahanwar, Effect of Particle Size and Concentration of Fly Ash on Mechanical Properties of Polyphenylene Oxide Composites,, Int. J. Chem. Environ. Biol. Sci., vol. 3, no. 2, p.164–168, (2015).
Google Scholar
[31]
J. M. Salman, Studying Some Properties of Unsaturated Polyester Composite Reinforced by Carbon Black Particulate,, J. Babylon Univ. Sci. No, no. 223, p.2011–2015, (2015).
Google Scholar
[32]
M. Akay, Introduction to Polymer Science and Technology. Mustafa Akay & ventus Publishing apS, (2012).
Google Scholar
[33]
S. H. Yetkin, H. Unal, A. Mimaroglu, and F. Findik, Influence of Process Parameters on the Mechanical and Foaming Properties of PP Polymer and PP/TALC/EPDM Composites,, Polym. - Plast. Technol. Eng., vol. 52, no. 5, p.433–439, (2013).
DOI: 10.1080/03602559.2012.748802
Google Scholar