Charge Propagation along the Polymer Fiber of Polyhydroxybutyrate: Is it Possible to Apply the Cable Model?

Article Preview

Abstract:

This article considers experimental data on the surface charge propagation along the dielectric polymer fibers. Nonwoven polymer materials based on polyhydroxybutyrate obtained by electrospinning technique were used as an example of dielectric fibers in our experiments. Polymer fiber charging was investigated under the electron beam in a vacuum chamber of the scanning electron microscope. The fiber electric response registration was performed in a TV mode and in dynamic conditions using oscilloscopic sectioning visualization. Digitized images were processed using specialized software by Sobel-Feldman operator (Sobel filter), visualizing isopotential lines of the electron beam-induced emission. The results obtained were analyzed in the framework of the Roll’s cable model, which has been extrapolated from the electrical signal transduction along the nerve fibers to the charge propagation along the dielectric polymer fibers.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. Gross, G.M. Sessler, J.E. West, Location of charge centroid in electron beam charged polymer films, Journal of Applied Physics. 48 (1977) 4303-4306.

DOI: 10.1063/1.323419

Google Scholar

[2] J. Wibbeler, G. Pfeifer, M. Hietschold, Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS), Sensors and Actuators A: Physical. 71 (1998) 74-80.

DOI: 10.1016/s0924-4247(98)00155-1

Google Scholar

[3] W.Q. Li, H.B. Zhang, The positive charging effect of dielectric films irradiated by a focused electron beam, Applied Surface Science. 256 (2010) 3482-3492.

DOI: 10.1016/j.apsusc.2009.12.061

Google Scholar

[4] H. Von Seggern, Charging dynamics of dielectrics irradiated by low energy electrons, IEEE Transactions on Nuclear Science. 32 (1985) 1503-1511.

DOI: 10.1109/tns.1985.4333643

Google Scholar

[5] G.M., Sessler, R. Gerhard-Multhaupt, A review of methods for change-or field-distribution studies on radiation-charged dielectric films, Radiation Physics and Chemistry. 23 (1984) 363-370.

DOI: 10.1016/0146-5724(84)90051-7

Google Scholar

[6] G. Blaise, C. Le Gressus, Charging and flashover induced by surface polarization relaxation process, Journal of Applied Physics. 69 (1991) 6334-6339.

DOI: 10.1063/1.348832

Google Scholar

[7] R. Garcia-Molina, A. Gras-Marti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged particle beams with bounded condensed media, Journal of Physics C: Solid State Physics. 18 (1985) 5335-5345.

DOI: 10.1088/0022-3719/18/27/019

Google Scholar

[8] J.R. Gerhard-Multhaupt, M. Haardt, W. Eisenmenger, G.M. Sessler, Electric-field profiles in electron-beam-charged polymer electrets, Journal of Physics D: Applied Physics. 16 (1983) 2247.

DOI: 10.1088/0022-3727/16/11/027

Google Scholar

[9] M.J. Kadhim, S.I. Al-Rubaiey, A.S. Hammood, The influence of laser specific energy on laser sealing of plasma sprayed yttria partially stabilized zirconia coating, Optics and Lasers in Engineering. 51 (2013) 159-166.

DOI: 10.1016/j.optlaseng.2012.08.010

Google Scholar

[10] N.H. Sabah, K.N. Leibovic, Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon, Biophysical Journal. 9 (1969) 1206-1222.

DOI: 10.1016/s0006-3495(69)86446-5

Google Scholar

[11] S. Redman, The attenuation of passively propagating dendritic potentials in a motoneurone cable model, The Journal of Physiology. 234 (1973) 637-664.

DOI: 10.1113/jphysiol.1973.sp010365

Google Scholar

[12] G.M. Strain, W.H. Brockman, A modified cable model for neuron processes with non-constant diameters, Journal of Theoretical Biology. 51 (1975) 475-494.

DOI: 10.1016/0022-5193(75)90075-2

Google Scholar

[13] D. Durand, The somatic shunt cable model for neurons, Biophysical Journal. 46 (1984) 645-653.

DOI: 10.1016/s0006-3495(84)84063-1

Google Scholar

[14] A.K. Schierwagen, A non-uniform equivalent cable model of membrane voltage changes in a passive dendritic tree, Journal of Theoretical Biology. 141 (1989) 159-179.

DOI: 10.1016/s0022-5193(89)80015-3

Google Scholar

[15] R. Poznanski, A generalized tapering equivalent cable model for dendritic neurons, Bulletin of Mathematical Biology. 53 (1991) 457-467.

DOI: 10.1016/s0092-8240(05)80398-2

Google Scholar

[16] J.D. Evans, G.C. Kember, G. Major, Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones, Biophysical Journal. 63 (1992) 350-365.

DOI: 10.1016/s0006-3495(92)81631-4

Google Scholar

[17] R. Poznanski, Electrophysiology of a leaky cable model for coupled neurons, The ANZIAM Journal. 40 (1998) 59-71.

Google Scholar

[18] M. Ohme, A. Schierwagen, An equivalent cable model for neuronal trees with active membrane, Biological Cybernetics. 78 (1998) 227-243.

DOI: 10.1007/s004220050429

Google Scholar

[19] W. Rall, A statistical theory of monosynaptic input-output relations, Journal of Cellular and Comparative Physiology 46 (1955) 373-411.

DOI: 10.1002/jcp.1030460302

Google Scholar

[20] W. Rall, Experimental monosynaptic input-output relations in the mammalian spinal cord, Journal of Cellular and Comparative Physiology. 46 (1955) 413-437.

DOI: 10.1002/jcp.1030460303

Google Scholar

[21] W. Rall, Membrane time constant of motoneurons, Science. 126 (1957): 454-458.

Google Scholar

[22] W. Rall, Branching dendritic trees and motoneuron membrane resistivity, Experimental Neurology. 1 (1959) 491-527.

DOI: 10.1016/0014-4886(59)90046-9

Google Scholar

[23] W. Rall, Membrane potential transients and membrane time constant of motoneurons, Experimental Neurology. 2 (1960) 503-532.

DOI: 10.1016/0014-4886(60)90029-7

Google Scholar