[1]
R.W. Baker, Membrane technology and applications, John Wiley & Sons, (2004).
Google Scholar
[2]
B. Freeman, Y. Yampolskii, I. Pinnau, Materials science of membranes for gas and vapor separation, John Wiley & Sons, (2006).
DOI: 10.1002/047002903x
Google Scholar
[3]
L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400.
Google Scholar
[4]
P.Yu. Apel, O.V. Bobreshova, A.V. Volkov, V V. Volkov, V.V. Nikonenko, I.A. Stenina, A.N. Filippov, Yu.P. Yampolskii, A.B. Yaroslavtsev, Prospects of Membrane Science Development, Membr. and Membr. Tech. 1 (2019) 45-63.
DOI: 10.1134/s2517751619020021
Google Scholar
[5]
Y.P. Yampol'skii, Polymeric gas separation membranes, Macromol. 45 (2012) 3298-3311.
Google Scholar
[6]
L.C.E. Struik, Physical aging in amorphous polymers and other materials, Polym. Eng. Sci. 17 (1977) 165-173.
Google Scholar
[7]
I.M. Hodge, Physical aging in polymer glasses, Science. 267 (1995) 1945-1947.
Google Scholar
[8]
G.B. McKenna, On the physics required for prediction of long term performance of polymers and their composites, J. Res. NIST. 99 (1994) 169-169.
Google Scholar
[9]
J.M. Hutchinson, Physical aging of polymers, Prog. Polym. 20 (1995) 703-760.
Google Scholar
[10]
Y.P. Yampol'skii, S.M. Shishatskii, V.P. Shantorovich, E.M. Antipov, N.N. Kuzmin, S.V. Rykov, N.A. Plate, Transport characteristics and other physicochemical properties of aged poly (1-(trimethylsilyl)-1-; propyne), J. Appl. Polym. Sci. 48 (1993) 1935-1944.
DOI: 10.1002/app.1993.070481107
Google Scholar
[11]
L. Starannikova, V. Khodzhaeva, Y. Yampolskii, Mechanism of aging of poly [1-(trimethylsilyl)-1-propyne] and its effect on gas permeability, J.Membr. Sci. 244 (2004) 183-191.
DOI: 10.1016/j.memsci.2004.06.051
Google Scholar
[12]
O.Y. Rusakova, A.Yu. Alentiev, N.V. Kukarin, Increase in gas separation selectivity during physical aging of OH-containing polyimide. Petroleum Chemistry, 51 (2011) 514-518.
DOI: 10.1134/s0965544111070115
Google Scholar
[13]
G.S. Golubev, I.L. Borisov, E.G. Litvinova, V.S. Khotimskiy, D.S. Bakhtin, A.V. Pastukhov, V.A. Davankov, V.V. Volkov., A novel hybrid material based on polytrimethylsilylpropyne and hypercrosslinked polystyrene for membrane gas separation and thermopervaporation, Petrol. Chem. 57 (2017) 498-510.
DOI: 10.1134/s0965544117060032
Google Scholar
[14]
C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, J.P. Sullivan Ending aging in super glassy polymer membranes, Angew. Chem. 53 (2014) 5426-5430.
DOI: 10.1002/ange.201402234
Google Scholar
[15]
C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, J.P. Sullivan Ending aging in super glassy polymer membranes, Angew. Chem. Int. Ed. 53 (2014) 5322-5326.
DOI: 10.1002/anie.201402234
Google Scholar
[16]
C.H. Lau, K. Konstas, C.M. Doherty, S. Kanehashi, B. Ozcelik, S.E. Kentish, M.R. Hill, Tailoring physical aging in super glassy polymers with functionalized porous aromatic frameworks for CO2 capture Chem. Mater. 27 (2015) 4756-4762.
DOI: 10.1021/acs.chemmater.5b01537
Google Scholar
[17]
C.H. Lau, K. Konstas, A.W. Thornton, A.C. Liu, S. Mudie, D.F. Kennedy, M.R. Hill, Gas-Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age Angew. Chem. Int. Ed. 54 (2015) 2669-2673.
DOI: 10.1002/anie.201410684
Google Scholar
[18]
M. Kitchin, J. Teo, K. Konstas, C.H. Lau, C.J. Sumby, A.W. Thornton, C.J. Doonan, M.R. Hill, AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes J. Mater. Chem. A. 3 (2015) 15241-15247.
DOI: 10.1039/c5ta02286j
Google Scholar
[19]
A.V. Volkov, D.S. Bakhtin, L.A. Kulikov, M.V. Terenina, G.S. Golubev, G.N. Bondarenko, S.A. Legkov, G.A. Shandryuk, V.V. Volkov, V.S. Khotimskiy, A.A. Belogorlov, A.L. Maksimov, E.A. Karakhanov, Stabilization of gas transport properties of PTMSP with porous aromatic framework: Effect of annealing, J. Membr. Sci. 517 (2016) 80-90.
DOI: 10.1016/j.memsci.2016.06.033
Google Scholar
[20]
N. Konnertz, Y. Ding, W.J. Harrison, P.M. Budd, A. Schönhals, M. Böhning, Molecular mobility of the high performance membrane polymer PIM-1 as investigated by dielectric spectroscopy, ACS M. Lett. 5 (2016) 528-532.
DOI: 10.1021/acsmacrolett.6b00209
Google Scholar
[21]
X. Cheng, X. Jiang, Y. Zhang, C.H. Lau, Z. Xie, D. Ng, L. Shao, Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents, ACS Appl. Mater. Inter. 9 (2017) 38877-38886.
DOI: 10.1021/acsami.7b07373
Google Scholar
[22]
C.H. Lau, X. Mulet, K. Konstas, C.M. Doherty, M.A. Sani, F. Separovic, C.D. Wood, Hypercrosslinked Additives for Ageless Gas-Separation Membranes, Angew. Chem. Int. Ed. 55 (2016) 1998-2001.
DOI: 10.1002/anie.201508070
Google Scholar
[23]
L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations, J. Membr. Sci. 326 (2009) 285-292.
DOI: 10.1016/j.memsci.2008.09.053
Google Scholar
[24]
L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled poly (1-trimethylsilyl-1-propyne) nanocomposite membranes for gas separations, J. Appl. Polym. Sci. 113 (2009) 3078-3088.
DOI: 10.1002/app.30320
Google Scholar
[25]
S.D. Kelman, R.D. Raharjo, C.W. Bielawski, B.D. Freeman, The influence of crosslinking and fumed silica nanoparticles on mixed gas transport properties of poly [1-(trimethylsilyl)-1-propyne] Polymer. 49 (2008) 3029-3041.
DOI: 10.1016/j.polymer.2008.03.053
Google Scholar
[26]
Y. Yuan, F. Sun, H. Ren, X. Jing, W. Wang, H. Ma, G. Zhu, Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecule, J. Mater. Chem. 35 (2011) 13498-13502.
DOI: 10.1039/c1jm11998b
Google Scholar
[27]
M. Moreno-Mañas, M. Pérez, R. Pleixats, Palladium-catalyzed Suzuki-type self-coupling of arylboronic acids. A mechanistic study, J. Org. Chem. 61 (1996) 2346-2351.
DOI: 10.1021/jo9514329
Google Scholar