Introduction of Nanoscale Porous Aromatic Frameworks in PTMSP Matrix

Article Preview

Abstract:

Samples of nanoscale nano-PAF-10 and nano-PAF-24 porous aromatic framework-like polymeric materials were synthesized using the Suzuki reaction in a microemulsion. Monomers were tetrakis-(p-bromophenyl)methane and 1,4-phenylenediboronic acid. The main idea of the approach is to use 1,4-phenylenediboronic acid not only as a direct participant in the reaction, but also as a surfactant, which allows to stabilize the drops of the emulsion. Using this procedure, samples of PAF-like polymers were synthesized from the mixture, containing the mixture of tetrakis(p-bromophenyl)methane and 1,4-phenylenediboronic acid in ratio from 1:2 to 1:6; the reaction was conducted from 10 to 24 hours. The resulting materials were characterized by IR spectroscopy, NMR spectroscop. To estimate the particle size of the obtained materials, transmission electron microscopy was used. The object of the study were polymers, that were synthesized in 10-hour and 24-hour reactions. The particle size in the first material was in the range of 3-10 nm, in the second - from 30 to 100 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-39

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W. Baker, Membrane technology and applications, John Wiley & Sons, (2004).

Google Scholar

[2] B. Freeman, Y. Yampolskii, I. Pinnau, Materials science of membranes for gas and vapor separation, John Wiley & Sons, (2006).

DOI: 10.1002/047002903x

Google Scholar

[3] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400.

Google Scholar

[4] P.Yu. Apel, O.V. Bobreshova, A.V. Volkov, V V. Volkov, V.V. Nikonenko, I.A. Stenina, A.N. Filippov, Yu.P. Yampolskii, A.B. Yaroslavtsev, Prospects of Membrane Science Development, Membr. and Membr. Tech. 1 (2019) 45-63.

DOI: 10.1134/s2517751619020021

Google Scholar

[5] Y.P. Yampol'skii, Polymeric gas separation membranes, Macromol. 45 (2012) 3298-3311.

Google Scholar

[6] L.C.E. Struik, Physical aging in amorphous polymers and other materials, Polym. Eng. Sci. 17 (1977) 165-173.

Google Scholar

[7] I.M. Hodge, Physical aging in polymer glasses, Science. 267 (1995) 1945-1947.

Google Scholar

[8] G.B. McKenna, On the physics required for prediction of long term performance of polymers and their composites, J. Res. NIST. 99 (1994) 169-169.

Google Scholar

[9] J.M. Hutchinson, Physical aging of polymers, Prog. Polym. 20 (1995) 703-760.

Google Scholar

[10] Y.P. Yampol'skii, S.M. Shishatskii, V.P. Shantorovich, E.M. Antipov, N.N. Kuzmin, S.V. Rykov, N.A. Plate, Transport characteristics and other physicochemical properties of aged poly (1-(trimethylsilyl)-1-; propyne), J. Appl. Polym. Sci. 48 (1993) 1935-1944.

DOI: 10.1002/app.1993.070481107

Google Scholar

[11] L. Starannikova, V. Khodzhaeva, Y. Yampolskii, Mechanism of aging of poly [1-(trimethylsilyl)-1-propyne] and its effect on gas permeability, J.Membr. Sci. 244 (2004) 183-191.

DOI: 10.1016/j.memsci.2004.06.051

Google Scholar

[12] O.Y. Rusakova, A.Yu. Alentiev, N.V. Kukarin, Increase in gas separation selectivity during physical aging of OH-containing polyimide. Petroleum Chemistry, 51 (2011) 514-518.

DOI: 10.1134/s0965544111070115

Google Scholar

[13] G.S. Golubev, I.L. Borisov, E.G. Litvinova, V.S. Khotimskiy, D.S. Bakhtin, A.V. Pastukhov, V.A. Davankov, V.V. Volkov., A novel hybrid material based on polytrimethylsilylpropyne and hypercrosslinked polystyrene for membrane gas separation and thermopervaporation, Petrol. Chem. 57 (2017) 498-510.

DOI: 10.1134/s0965544117060032

Google Scholar

[14] C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, J.P. Sullivan Ending aging in super glassy polymer membranes, Angew. Chem. 53 (2014) 5426-5430.

DOI: 10.1002/ange.201402234

Google Scholar

[15] C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, J.P. Sullivan Ending aging in super glassy polymer membranes, Angew. Chem. Int. Ed. 53 (2014) 5322-5326.

DOI: 10.1002/anie.201402234

Google Scholar

[16] C.H. Lau, K. Konstas, C.M. Doherty, S. Kanehashi, B. Ozcelik, S.E. Kentish, M.R. Hill, Tailoring physical aging in super glassy polymers with functionalized porous aromatic frameworks for CO2 capture Chem. Mater. 27 (2015) 4756-4762.

DOI: 10.1021/acs.chemmater.5b01537

Google Scholar

[17] C.H. Lau, K. Konstas, A.W. Thornton, A.C. Liu, S. Mudie, D.F. Kennedy, M.R. Hill, Gas-Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age Angew. Chem. Int. Ed. 54 (2015) 2669-2673.

DOI: 10.1002/anie.201410684

Google Scholar

[18] M. Kitchin, J. Teo, K. Konstas, C.H. Lau, C.J. Sumby, A.W. Thornton, C.J. Doonan, M.R. Hill, AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes J. Mater. Chem. A. 3 (2015) 15241-15247.

DOI: 10.1039/c5ta02286j

Google Scholar

[19] A.V. Volkov, D.S. Bakhtin, L.A. Kulikov, M.V. Terenina, G.S. Golubev, G.N. Bondarenko, S.A. Legkov, G.A. Shandryuk, V.V. Volkov, V.S. Khotimskiy, A.A. Belogorlov, A.L. Maksimov, E.A. Karakhanov, Stabilization of gas transport properties of PTMSP with porous aromatic framework: Effect of annealing, J. Membr. Sci. 517 (2016) 80-90.

DOI: 10.1016/j.memsci.2016.06.033

Google Scholar

[20] N. Konnertz, Y. Ding, W.J. Harrison, P.M. Budd, A. Schönhals, M. Böhning, Molecular mobility of the high performance membrane polymer PIM-1 as investigated by dielectric spectroscopy, ACS M. Lett. 5 (2016) 528-532.

DOI: 10.1021/acsmacrolett.6b00209

Google Scholar

[21] X. Cheng, X. Jiang, Y. Zhang, C.H. Lau, Z. Xie, D. Ng, L. Shao, Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents, ACS Appl. Mater. Inter. 9 (2017) 38877-38886.

DOI: 10.1021/acsami.7b07373

Google Scholar

[22] C.H. Lau, X. Mulet, K. Konstas, C.M. Doherty, M.A. Sani, F. Separovic, C.D. Wood, Hypercrosslinked Additives for Ageless Gas-Separation Membranes, Angew. Chem. Int. Ed. 55 (2016) 1998-2001.

DOI: 10.1002/anie.201508070

Google Scholar

[23] L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations, J. Membr. Sci. 326 (2009) 285-292.

DOI: 10.1016/j.memsci.2008.09.053

Google Scholar

[24] L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled poly (1-trimethylsilyl-1-propyne) nanocomposite membranes for gas separations, J. Appl. Polym. Sci. 113 (2009) 3078-3088.

DOI: 10.1002/app.30320

Google Scholar

[25] S.D. Kelman, R.D. Raharjo, C.W. Bielawski, B.D. Freeman, The influence of crosslinking and fumed silica nanoparticles on mixed gas transport properties of poly [1-(trimethylsilyl)-1-propyne] Polymer. 49 (2008) 3029-3041.

DOI: 10.1016/j.polymer.2008.03.053

Google Scholar

[26] Y. Yuan, F. Sun, H. Ren, X. Jing, W. Wang, H. Ma, G. Zhu, Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecule, J. Mater. Chem. 35 (2011) 13498-13502.

DOI: 10.1039/c1jm11998b

Google Scholar

[27] M. Moreno-Mañas, M. Pérez, R. Pleixats, Palladium-catalyzed Suzuki-type self-coupling of arylboronic acids. A mechanistic study, J. Org. Chem. 61 (1996) 2346-2351.

DOI: 10.1021/jo9514329

Google Scholar