Gas Separation Membranes Based on Germanium Containing Polyalkylenesiloxane

Article Preview

Abstract:

An original method for the synthesis of monomer for the preparation of a new membrane polymer, 2,2,4,4,6,6-hexamethyl-1-oxa-2,6-disyl-4-germanocyclohexane, is proposed, which allows increasing the yield of the target substance. By polycondensation polymerization, a membrane-forming germanium-containing polycarbosiloxane was synthesized. Based on it, new highly permeable membranes with high selectivity of butane / methane were first obtained and studied. When comparing the transport properties of silicon and germanium-containing polymers, it was found that polycarbosiloxane containing germanium atoms in the main chain shows higher values of butane selectivity and permeability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Bernardo, E. Drioli, Membrane gas separation progresses for process intensification strategy in the petrochemical industry, Petr. Chem. 50 (2010) 271-282.

DOI: 10.1134/s0965544110040043

Google Scholar

[2] Y. Ding, Perspective on Gas Separation Membrane Materials from Process Economics Point of View, Ind. Eng. Chem. Res. 59 (2020) 556-568.

DOI: 10.1021/acs.iecr.9b05975

Google Scholar

[3] A. Malakhov, A. Volkov, Application of Coupled Solution-Diffusion Model in Organic Solvent Nanofiltration: Positive and Negative Rejection of Solutes, Sep. Sci.Techn. 50 (2015) 2198-2210.

DOI: 10.1080/01496395.2015.1031403

Google Scholar

[4] N.A. Plate, A.K. Bokarev, N.E. Kaliuzhnyi, E.G. Litvinova, V.S. Khotimskii, V.V. Volkov, Yu.P. Yampolskii, Gas and vapor permeation and sorption in poly(trimethylsilylpropyne), J. Membr. Sci. 60 (1991) 13-24.

DOI: 10.1016/s0376-7388(00)80321-x

Google Scholar

[5] Schultz J., Peinemann K. V. Membranes for separation of higher hydrocarbons from methane. J. Membr. Sci. 110 (1996) 37-45.

DOI: 10.1016/0376-7388(95)00214-6

Google Scholar

[6] H. Mushardt, M. Müller, S. Shishatskiy, J. Wind, T. Brinkmann, Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions, Membranes. 6 (2016) 16.

DOI: 10.3390/membranes6010016

Google Scholar

[7] K.G. Nagai, B.D. Freeman, A.J. Hill, Effect of physical aging of poly (1-trimethylsilyl-1-propyne) films synthesized with TaCl5 and NbCl5 on gas permeability, fractional free volume, and positron annihilation lifetime spectroscopy parameters, J. Polym. Sci. B Polym. Phys. 38 (2000) 1222-1239.

DOI: 10.1002/(sici)1099-0488(20000501)38:9<1222::aid-polb14>3.0.co;2-p

Google Scholar

[8] A.V. Volkov, D.S. Bakhtin, L.A. Kulikov, M.V. Terenina, G.S. Golubev, G.N. Bondarenko, S.A. Legkov, G.A. Shandryuk, V.V. Volkov, V.S. Khotimskiy, A.A. Belogorlov, A.L. Maksimov, E.A. Karakhanov, Stabilization of gas transport properties of PTMSP with porous aromatic framework: Effect of annealing, J. Membr. Sci. 517 (2016) 80-90.

DOI: 10.1016/j.memsci.2016.06.033

Google Scholar

[9] G.S. Golubev, I.L. Borisov, E.G. Litvinova, V.S. Khotimsky, D.S. Bakhtin, A.V. Pastukhov, V.A. Davankov, V.V. Volkov Novel Hybrid Material Based on Polytrimethylsilylpropyne and Hypercrosslinked Polystyrene for Membrane Gas Separation and Thermopervaporation, Petr. Chem. 57 (2017) 498-510.

DOI: 10.1134/s0965544117060032

Google Scholar

[10] L.C. Hon, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, R.J. Mulder, L. Bourgeois, A.C.Y. Liu, D.J. Sprouster, J.P. Sullivan, T.J. Bastow, A.J. Hill, D.L. Gin, R.D. Noble, Ending aging in super glassy polymer membranes, Angew. Chem. 126 (2014) 5426-5430.

DOI: 10.1002/ange.201402234

Google Scholar

[11] L.A. Kulikov, D.S. Bakhtin, V.G. Polevaya, A.V. Balynin, A.L. Maksimov, A.V. Volkov, Friedel-Crafts Synthesis of New Porous Aromatic Frameworks for Stabilizing Gas Transport Properties of Highly Permeable Glassy Polymers, Russ. J. Appl. Chem. 90 (2019) 199-207.

DOI: 10.1134/s1070427219020058

Google Scholar

[12] D.S. Bakhtin, L.A. Kulikov, S.A. Legkov, V.S. Khotimskiy, I.S. Levin, I.L. Borisov, A.L. Maksimov, V.V. Volkov, E.A. Karakhanov, A.V. Volkov, Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks, J. Membr. Sci. 554 (2018) 211-220.

DOI: 10.1016/j.memsci.2018.03.001

Google Scholar

[13] R.W. Baker, K. Lokhandwala Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res. 47 (2008) 2109-2121.

DOI: 10.1021/ie071083w

Google Scholar

[14] E.Sh. Finkelshtein, N.V. Ushakov, E.G. Krasheninnikov, Yu.P. Yampolskii, New polysilalkylenes: synthesis and gas-separation properties, Russ. Chem. Bull. 53 (2004) 2604-2610.

DOI: 10.1007/s11172-005-0161-3

Google Scholar

[15] I.L. Borisov, N.V. Ushakov, V.V. Volkov, Finkelstein E.Sh. Polydimethylsildimethylen and polydimethylsiltrimethylendimethylsiloxanes – materials for sorbtion selective membranes, Russ. Chem. Bull. 10 (2016) 1020-1022.

Google Scholar

[16] I.L. Borisov, N.V. Ushakov, E.A. Grushevenko, E.S. Finkel'stein, V.V. Volkov, Synthesis and Formation of Gas Separation Membranes Based on Polyalkylenesiloxanes. Key Eng. Mater. 816 (2019) 233-237.

DOI: 10.4028/www.scientific.net/kem.816.233

Google Scholar

[17] I.L. Borisov, T.R. Akmalov, A.O. Ivanov, V.V. Volkov, E.S. Finkelshtein, M.V. Bermeshev, A new cycloadduct based on quadricyclane and perfluorocyclohexene: synthesis, metathesis polymerization and gas-transport properties of the obtained polymer, Mendeleev Commun. 26 (2016) 124-126.

DOI: 10.1016/j.mencom.2016.03.013

Google Scholar

[18] H.X. Rao, F.N. Liu, Z.Y. Zhang, Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane, J. Membr. Sci. 303 (2007) 132-139.

DOI: 10.1016/j.memsci.2007.07.002

Google Scholar