Exploring the Complexation of Counterion in Novel Family of Polyelectrolytes with Unexpected Solubility Behaviour

Article Preview

Abstract:

In the present paper we study the effect of complexation in linear negatively charged polyelectrolytes with different alkali ions. With combination of IR-spectroscopy, X-ray diffraction and nanocalorimetry, we attempted to explain unusual solubility, crystallinity and thermal stability of these polymers. The increase of thermal stability and insolubility in water in series of semi-crystalline polysalts as K+ ≤ H+ <Na+ was explained by effectiveness of formation of chelating complex. Insoluble in water sodium salt shows the highest thermal stability of crystal phase up to . In contrast, well soluble in water amorphous lithium salt does not self-organize in chelating complex and is presented in ionic form.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-68

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Elimelech, The global challenge for adequate and safe water, J. Water Supply Res. Technol. - AQUA. 55 (2006) 3-10.

DOI: 10.2166/aqua.2005.064

Google Scholar

[2] M.A. Shannon, et al., Science and technology for water purification in the coming decades. Nature 452 (2008) 301-310.

Google Scholar

[3] M.C.M. Van Loosdrecht, D. Brdjanovic, Anticipating the next century of wastewater treatment, Science. 344 (2014) 1452-1453.

DOI: 10.1126/science.1255183

Google Scholar

[4] S.B. Grant, et al., Taking the waste' out of 'wastewater, for human water security and ecosystem sustainability, Science. 337 (2012) 681-686.

Google Scholar

[5] W.J. Macknight, E.A. Ponomarenko, D.A. Tirrell, Self-Assembled Polyelectrolyte - Surfactant Complexes in Nonaqueous Solvents and in the Solid State, Acc. Chem. Res. 31 (1998) 781-788.

DOI: 10.1021/ar960309g

Google Scholar

[6] P.M. Claesson, E. Poptoshev, E. Blomberg, A. Dedinaite, Polyelectrolyte-mediated surface interactions, Adv. Colloid Interface Sci. 114-115 (2005) 173-187.

DOI: 10.1016/j.cis.2004.09.008

Google Scholar

[7] P. Bertrand, A. Jonas, A. Laschewsky, R. Legras, Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties Scheme of the electrostatic layer-by-layer self-assembly (ESA), Macromol. Rapid Commun 21 (2000).

DOI: 10.1002/(sici)1521-3927(20000401)21:7<319::aid-marc319>3.0.co;2-7

Google Scholar

[8] B. Schille, N.O. Giltzau, R. Francke, Zur Nutzung von Polyelektrolyten und Polymediatoren in der organischen Elektrosynthese, Angew. Chemie. 130 (2017) 429-433.

DOI: 10.1002/ange.201710659

Google Scholar

[9] B. Bolto, J. Gregory, Organic polyelectrolytes in water treatment, Water Res. 41 (2007) 2301-2324.

DOI: 10.1016/j.watres.2007.03.012

Google Scholar

[10] J. Penelle, T. Xie, Synthesis, characterization, and thermal properties of poly(trimethylene-1,1-dicarboxylate) polyelectrolytes, Macromolecules. 34 (2001) 5083-5089.

DOI: 10.1021/ma002176r

Google Scholar

[11] P. Sikorski, E.D.T. Atkins, L.C. Kagumba, J. Penelle, Structure and morphology of poly(diethyl trimethylene-1,1-dicarboxylate) crystals, Macromolecules. 35 (2002) 6975-6984.

DOI: 10.1021/ma020486z

Google Scholar

[12] N. Illy, et al., Synthesis and Solid-State Properties of PolyC3 (Co)polymers Containing (CH2-CH2-C(COOR)2) Repeat Units with Densely Packed Fluorocarbon Lateral Chains, Macromolecules. 52 (2019) 9199-9207.

DOI: 10.1021/acs.macromol.9b01559.s001

Google Scholar

[13] M.A.V. Axelos, M.M. Mestdagh, J. Francois, Phase Diagrams of Aqueous Solutions of Polycarboxylates in the Presence of Divalent Cations, Macromolecules. 27 (1994) 6594-6602.

DOI: 10.1021/ma00100a052

Google Scholar

[14] N. Elhalawany, C. Négrell, N. Illy, B. Brissault, J. Penelle, Preliminary investigations on a simple polyelectrolyte derived from (CH2CH2C(COOH)2)n: Unexpected solubility-insolubility pattern controlled selectively by the nature of the alkali counterion, Polymer. 116 (2017) 515-522.

DOI: 10.1016/j.polymer.2017.02.043

Google Scholar

[15] A. Benlahouès, Développement de méthodologies de synthèse innovantes pour l ' obtention de chimiothèques de polyélectrolytes (2018).

Google Scholar

[16] N. Piazzon, M. Rosenthal, A. Bondar, D. Spitzer, D.A. Ivanov, Characterization of explosives traces by the Nanocalorimetry, J. Phys. Chem. Solids. 71 (2010) 114-118.

DOI: 10.1016/j.jpcs.2009.07.032

Google Scholar

[17] A.P. Melnikov, et al., Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry, Eur. Polym. J. 81 (2016) 598-606.

DOI: 10.1016/j.eurpolymj.2015.12.031

Google Scholar

[18] A.P. Melnikov, M. Rosenthal, D.A. Ivanov, What Thermal Analysis Can Tell Us about Melting of Semicrystalline Polymers: Exploring the General Validity of the Technique, ACS Macro Lett. 7 (2018) 1426-1431.

DOI: 10.1021/acsmacrolett.8b00754

Google Scholar

[19] G. Ashiotis, et al., The fast azimuthal integration Python library: PyFAI, J. Appl. Crystallogr. 48 (2015) 510-519.

DOI: 10.1107/s1600576715004306

Google Scholar

[20] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. (Wiley).

Google Scholar

[21] G.B. Deacon, R.J. Phillips. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227-250.

DOI: 10.1016/s0010-8545(00)80455-5

Google Scholar

[22] W.R. Feairheller, J.E. Katon, The vibrational spectra of acrylic acid and sodium acrylate. Spectrochim, Acta Part A Mol. Spectrosc. 23 (1967) 2225-2232.

DOI: 10.1016/0584-8539(67)80114-4

Google Scholar